Acemoglu D., Akcigit U., Kerr W. (2016). Networks and the macroeconomy: An empirical exploration NBER Macroecon. Annual, 30 (1), pp. 273-335
Acemoglu, D., Carvalho, V. M., Ozdaglar, A., & Tahbaz‐Salehi, A. (2012). The network origins of aggregate fluctuations. Econometrica, 80(5), 1977-2016. https://doi.org/10.3982/ECTA9623
Almog, A., Squartini, T., & Garlaschelli, D. (2015). A GDP-driven model for the binary and weighted structure of the international trade network. New Journal of Physics, 17(1), 13009. https://doi.org/10.1088/1367-2630/17/1/013009
Anand, K., van Lelyveld, I., Banai, Á., Friedrich, S., Garratt, R., Hałaj, G., Fique, J., Hansen, I., Jaramillo, S. M., Lee, H., Molina-Borboa, J. L., Nobili, S., Rajan, S., Salakhova, D., Silva, T. C., Silvestri, L., & de Souza, Sergio Rubens Stancato. (2018). The missing links: A global study on uncovering financial network structures from partial data. Journal of Financial Stability, 35, 107-119. https://doi.org/10.1016/j.jfs.2017.05.012
Australian Bureau of Statistics (2020). Australian National Accounts: Supply Use Tables, retrieved September 9, 2020 https://www.abs.gov.au/statistics/economy/national-accounts/australian-national-accounts-supply-use-tables/latest-release
Australian Bureau of Statistics (2021). Australian National Accounts: Input-Output Tables, retrieved September 9, 2020 https://www.abs.gov.au/statistics/economy/national-accounts/australian-national-accounts-input-output-tables/2018-19
Australian Tax Office, (2020). Single Touch Payroll, retrieved September 1, 2020, https://www.ato.gov.au/business/single-touch-payroll/
Bernard, A. B., Dhyne, E., Magerman, G. C. G., Moxnes, A., & Manova, K. (2019). The origins of firm heterogeneity: A production network approach, National Bureau of Economic Research. https://doi.org/10.3386/w25441
Bernard, A. B., Moxnes, A., & Saito, Y. U. (2019). Production networks, geography, and firm performance. The Journal of Political Economy, 127(2), 639-688. https://doi.org/10.1086/700764
Boehm C. E., Flaaen A., Pandalai-Nayar A. (2019). Input Linkages and the Transmission of Shocks: Firm-Level Evidence from the 2011 Tōhoku Earthquake. The Review of Economics and Statistics; 101 (1): 60–75.
Breza, E., Chandrasekhar, A. G., McCormick, T. H., & Pan, M. (2020). Using aggregated relational data to feasibly identify network structure without network data. The American Economic Review, 110(8), 2454-2484. https://doi.org/10.1257/aer.20170861
Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., and Havlin, S. (2010). Catastrophic cascade of failures in interdependent networks. Nature, 464(7291), 1025.
Cairney, P. & Geyer:, R. (2017). "A Critical Discussion of Complexity Theory how does Complexity Thinking improve our Understanding of Politics and Policymaking?" Complexity, Governance & Networks, Vol. 3, No 2, p. 1-11 doi: http://dx.doi.org/10.20377/cgn-56
Caldarelli, G., Capocci, A., De Los Rios, P., & Muñoz, M. A. (2002). Scale-free networks from varying vertex intrinsic fitness. Physical Review Letters, 89(25), 258702-258702. https://doi.org/10.1103/PhysRevLett.89.258702
Carvalho V. M., Nirei M., Saito Y. U., & Tahbaz-Salehi, A. (2016). "Supply Chain Disruptions: Evidence from the Great East Japan Earthquake", Discussion papers 287, Policy Research Institute, Ministry of Finance Japan.
Cerdeiro, D. A, Komaromi, A., Liu, Y., Saeed, M. (2020). World Seaborne Trade in Real Time: A Proof of Concept for Building AIS-based Nowcasts from Scratch, IMF Working Papers, International Monetary Fund
Cimini, G. Squartini, T., Garlaschelli, D., Gabrielli, A. (2015). Systemic risk analysis on reconstructed economic and financial networks, Sci. Rep. 5 15758. http://dx.doi.org/10.1038/srep15758.
Commonwealth Scientific and Industrial Research Organisation (2021). ‘Unlocking infrastructure investment and regulatory options for more efficient transport of agriculture and broader freight’, Transport logistics-TraNSIT, retrieved September 9, 2020, https://www.csiro.au/en/research/technology-space/it/transport-logistics-transit
Cover, T. M., Thomas, J. A. (2006). Elements of Information Theory, Wiley-Interscience
De Masi, G., Iori, G., & Caldarelli, G. (2006). Fitness model for the italian interbank money market. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 74(6 Pt 2), 066112-066112. https://doi.org/10.1103/PhysRevE.74.066112
Department of Defence (2021). Global Supply Chain Program, retrieved September 9, 2020, https://www1.defence.gov.au/business-industry/industry-programs/global-supply-chain
Department of Foreign Affairs and Trade (2021a). Joint Statement on the Supply Chain Resilience Initiative by Australian, Indian and Japanese Trade Ministers, retrieved September 9, 2020, https://www.dfat.gov.au/news/media-release/joint-statement-supply-chain-resilience-initiative-australian-indian-and-japanese-trade-ministers
Department of Foreign Affairs and Trade (2021b). ‘Pivot: Diversifying Australia’s Trade and Investment Profile’, Australian government response joint standing committee trade investment growth report retrieved September 9, 2020, https://www.dfat.gov.au/sites/default/files/government-response-joint-standing-committee-trade-investment-growth-report.pdf
Department of Home Affairs (2021a). Critical Technology Supply Chain Principles, Discussion Paper, retrieved September 9, 2020, https://www.homeaffairs.gov.au/reports-and-pubs/files/critical-technology-supply-chain-principles-discussion-paper.pdf
Department of Home Affairs (2021b). Protecting Critical Infrastructure and Systems of National Significance, Consultation Paper, retrieved September 9, 2020, https://www.homeaffairs.gov.au/reports-and-pubs/files/protecting-critical-infrastructure-systems-consultation-paper.pdf
Department of Home Affairs (2021c). Australia’s Cyber Security Strategy 2020, retrieved September 9, 2020, https://www.homeaffairs.gov.au/cyber-security-subsite/files/cyber-security-strategy-2020.pdf
Department of Industry, Science, Energy and Resources (2021). Make it Happen: The Australian Government’s Modern Manufacturing Strategy, retrieved September 9, 2020, https://www.industry.gov.au/data-and-publications/make-it-happen-the-australian-governments-modern-manufacturing-strategy
Department of Infrastructure, Transport, Cities and Regional Development (2021a). The National Freight Data Hub, retrieved September 9, 2020, https://www.infrastructure.gov.au/transport/freight/national-freight-data-hub/index.aspx
Department of Infrastructure, Transport, Cities and Regional Development (2021b). National Freight and Supply Chain Strategy, National Action Plan, retrieved September 9, 2020, https://www.freightaustralia.gov.au/sites/default/files/documents/national-action-plan-august-2019.pdf
Department of Treasury (2020). Options for mandatory e-Invoicing adoption by businesses, retrieved September 1, 2020, from https://treasury.gov.au/consultation/c2020-122716
Dhyne, E., & Duprez, C. (2017). It's a small, small world. A guided tour of the Belgian production network. International Productivity Monitor, (32), 84-96.
Dr Amineh Ghorbani A, Dr Francien DechesneB , Dr Virginia DignumC, Prof. Dr. Catholijn Jonker (2014). Enhancing ABM into an Inevitable Tool for Policy Analysis
Eppel, E.A. & Rhodes, M.L. (2018). "Complexity theory and public management: a ‘becoming’ field", Public management review, vol. 20, no. 7, pp. 949-959.
Freixas X, Laeven L, Peydró J (2015). “Chapter 8 – system risk and microprudential regulation” Systemic risk, crises, and macroprudential regulation. MIT Press, Boston
Furtado, B. A., Fuentes, M. A., & Tessone, C. J. (2019). Policy modeling and applications: State-of-the-art and perspectives. Complexity (New York, N.Y.), 2019, 1-11. https://doi.org/10.1155/2019/5041681
Gabaix X. (2011). The granular origins of aggregate fluctuations, Econometrica, 79 (3), pp. 733-772
Garlaschelli, D., & Loffredo, M. I. (2004). Fitness-dependent topological properties of the world trade web. Physical Review Letters, 93(18), https://doi.org/10.1103/PhysRevLett.93.188701
Garlaschelli, D., Battiston, S., Castri, M., Servedio, V. D. P., & Caldarelli, G. (2005). The scale-free topology of market investments. Physica A, 350(2), 491-499. https://doi.org/10.1016/j.physa.2004.11.040
Ghorbani, A, Dechesne, F, Dignum, V & Jonker, CM (2014). 'Enhancing ABM into an inevitable tool for policy analysis', Journal of Policy and Complex Systems, vol. 1, no. 1, pp. 61-76.
Haldane, A. G., & Turrell, A. E. (2019). Drawing on different disciplines: Macroeconomic agent-based models. Journal of Evolutionary Economics, 29(1), 39-66. doi:http://dx.doi.org.virtual.anu.edu.au/10.1007/s00191-018-0557-5
Hoffmann, C. H. (2017). Towards understanding dynamic complexity in financial systems Structure‐based explanatory modelling of risks. Systems Research and Behavioral Science, 34(6), 728-745. https://doi.org/10.1002/sres.2414
Hooijmaaijers, S., & Buiten, G., (2019). A methodology for estimating the Dutch interfirm trade network, including a breakdown by commodity, Centraal Bureau van Statistiek
Inoue, H., Todo, Y. (2019). Firm-level propagation of shocks through supply-chain networks. Nat Sustain 2, 841–847
Kashiwagi, Y., Todo, Y., & Matous, P. (2018). Propagation of economic shocks through global supply chains—Evidence from Hurricane Sandy. Review of International Economics. https://doi.org/10.1111/roie.12541
Kumar, A., Chakrabarti, A. S., Chakraborti, A., & Nandi, T. (2021). Distress propagation on production networks: Coarse-graining and modularity of linkages. Physics A, 568, 125714. https://doi.org/10.1016/j.physa.2020.125714
Kumar, S., Bansal, A., & Chakrabarti, A. S. (2020). Ripples on financial networks. The European Journal of Finance, 1-22. https://doi.org/10.1080/1351847X.2020.1835686
Lebacher, M., Cook, S., Klein, N., and Kauermann, G., (2019). In search of lost edges: a case study on reconstructing financial networks arXiv:1909.01274
LeBaron, B., & Tesfatsion, L. (2008). Modeling macroeconomies as open-ended dynamic systems of interacting agents. The American Economic Review, 98(2), 246-250. https://doi.org/10.1257/aer.98.2.246
Mazzarisi, P., and Lillo, F., (2017). Methods for Reconstructing Interbank Networks from Limited Information: A Comparison. 10.1007/978-3-319-47705-3_15.
Mercure, J., Pollitt, H., Bassi, A. M., Viñuales, J. E., & Edwards, N. R. (2016). Modelling complex systems of heterogeneous agents to better design sustainability transitions policy. Global Environmental Change, 37, 102-115. https://doi.org/10.1016/j.gloenvcha.2016.02.003
Mitic, P. (2020). Systemic shock propagation in a complex system. Soft Comput 24, 13667–13685 https://doi.org/10.1007/s00500-019-04466-6
Organisation for Economic Cooperation and Development (2017). Debate the Issues: Complexity and policy making, OECD Insights, OECD Publishing, Paris, http://dx.doi.org/10.1787/9789264271531-en.
Pagan, A. (2019). Australian Macro-Econometric Models and Their Construction – A short History Centre for Applied Microeconomic Analyses Working Paper, Australian National University
Parisi, F., Squartini, T., & Garlaschelli, D. (2020). A faster horse on a safer trail: Generalized inference for the efficient reconstruction of weighted networks. New Journal of Physics, 22(5), 53053. https://doi.org/10.1088/1367-2630/ab74a7
Prime Minister & Cabinet (2021). Tracking progress to 2030, Australia’s Digital Economy retrieved from https://digitaleconomy.pmc.gov.au/strategy/tracking-progress
Prime Minister of Australia (2021). A modern digital economy to secure Australia’s future, Media release, retrieved September 1, 2020, https://www.pm.gov.au/media/modern-digital-economy-secure-australias-future
Productivity Commission (2021). Vulnerable Supply Chains, Productivity Commission Study Report, retrieved from https://www.pc.gov.au/inquiries/completed/supply-chains/report/supply-chains.pdf
Rachkov, A., Pijpers, F.P., Garlaschelli, D. (2021). Potential Biases in Network Reconstruction Methods Not Maximizing Entropy, Discussion Paper, Centraal Bureau van Statistiek https://www.cbs.nl/en-gb/background/2021/09/potential-biases-in-network-reconstruction-methods
Ramadiah, A., Caccioli, F., & Fricke, D. (2020). Reconstructing and stress testing credit networks. Journal of Economic Dynamics & Control, 111, 103817. https://doi.org/10.1016/j.jedc.2019.103817
Roberts, N.C. (2000). "Wicked Problems and Network Approaches to Resolution", International Public Management Review, International Public Management Network https://journals.sfu.ca/ipmr/index.php/ipmr/article/view/175
Squartini, T., Almog, A., Caldarelli, G., Van Lelyveld, I., Garlaschelli, D., & Cimini, G. (2017). Enhanced capital-asset pricing model for the reconstruction of bipartite financial networks. Physical Review. E, 96(3), 032315-032315. https://doi.org/10.1103/PhysRevE.96.032315
Squartini, T., Caldarelli, G., Cimini, G., Gabrielli, A., & Garlaschelli, D. (2018). Reconstruction methods for networks: The case of economic and financial systems. Physics Reports, 757, 1-47. https://doi.org/10.1016/j.physrep.2018.06.008
Squartini, T., Van Lelyveld, I., & Garlaschelli, D. (2013). Early-warning signals of topological collapse in interbank networks. Scientific Reports (Nature Publisher Group), 3, 3357.
Starnini M., Boguñá M., Serrano M.Á. (2019). The interconnected wealth of nations: Shock propagation on global trade-investment multiplex networks, Sci. Rep., 9 (1), pp. 1-10
Verschuur, J., Koks, E. E., & Hall, J. W. (2020). Port disruptions due to natural disasters: Insights into port and logistics resilience. Transportation Research. Part D, Transport and Environment, 85, 102393. https://doi.org/10.1016/j.trd.2020.102393