Page tools: Print Page Print All RSS Search this Product  
TECHNICAL NOTE
5 The smaller the estimate the higher is the RSE. Very small estimates are subject to such high SEs (relative to the size of the estimate) as to detract seriously from their value for most reasonable uses. In the tables in this publication, only estimates with RSEs less than 25% are considered sufficiently reliable for most purposes. However, estimates with larger RSEs, between 25% and less than 50% have been included and are preceded by an asterisk (eg *3.4) to indicate they are subject to high SEs and should be used with caution. Estimates with RSEs of 50% or more are preceded with a double asterisk (eg **0.6). Such estimates are considered unreliable for most purposes. 6 The imprecision due to sampling variability, which is measured by the SE, should not be confused with inaccuracies that may occur because of imperfections in reporting by interviewers and respondents and errors made in coding and processing of data. Inaccuracies of this kind are referred to as the nonsampling error, and they may occur in any enumeration, whether it be in a full count or only a sample. In practice, the potential for nonsampling error adds to the uncertainty of the estimates caused by sampling variability. However, it is not possible to quantify the nonsampling error. STANDARD ERRORS OF PROPORTIONS AND PERCENTAGES 7 Proportions and percentages formed from the ratio of two estimates are also subject to sampling errors. The size of the error depends on the accuracy of both the numerator and the denominator. For proportions where the denominator is an estimate of the number of persons in a group and the numerator is the number of persons in a subgroup of the denominator group, the formula to approximate the RSE is given by: 8 From the above formula, the RSE of the estimated proportion or percentage will be lower than the RSE of the estimate of the numerator. Thus an approximation for SEs of proportions or percentages may be derived by neglecting the RSE of the denominator, ie by obtaining the RSE of the number of persons corresponding to the numerator of the proportion or percentage and then applying this figure to the estimated proportion or percentage. COMPARISON OF ESTIMATES 9 Published estimates may also be used to calculate the difference between two survey estimates. Such an estimate is subject to sampling error. The sampling error of the difference between two estimates depends on their SEs and the relationship (correlation) between them. An approximate SE of the difference between two estimates (xy) may be calculated by the following formula: 10 While the above formula will be exact only for differences between separate and uncorrelated (unrelated) characteristics of subpopulations, it is expected that it will provide a reasonable approximation for all differences likely to be of interest in this publication. SIGNIFICANCE TESTING 11 For comparing estimates between surveys or between populations within a survey it is useful to determine whether apparent differences are 'real' differences between the corresponding population characteristics or simply the product of differences between the survey samples. One way to examine this is to determine whether the difference between the estimates is statistically significant. This is done by calculating the standard error of the difference between two estimates (x and y) and using that to calculate the test statistic using the formula below: 12 If the value of the statistic is greater than 1.96 then we may say there is good evidence of a statistically significant difference between the two populations with respect to that characteristic. Otherwise, it cannot be stated with confidence that there is a real difference between the populations. 13 The imprecision due to sampling variability, which is measured by the SE, should not be confused with inaccuracies that may occur because of imperfections in reporting by respondents and recording by interviewers, and errors made in coding and processing data. Inaccuracies of this kind are referred to as nonsampling error, and they occur in any enumeration, whether it be a full count or sample. Every effort is made to reduce nonsampling error to a minimum by careful design of questionnaires, intensive training and supervision of interviewers, and efficient operating procedures. Document Selection These documents will be presented in a new window.

Follow us on...
Like us on Facebook Follow us on Twitter Follow us on Instagram ABS RSS feed Subscribe to ABS updates