Australian Bureau of Statistics 

6227.0  Education and Work, Australia, May 2011 Quality Declaration
Previous ISSUE Released at 11:30 AM (CANBERRA TIME) 30/11/2011 
Page tools: Print Page Print All RSS Search this Product  

TECHNICAL NOTE DATA QUALITY PROPORTION AND PERCENTAGES 9 Proportions and percentages formed from the ratio of two estimates are also subject to sampling errors. The size of the error depends on the accuracy of both the numerator and the denominator. A formula to approximate the RSE of a proportion is given below. This formula is only valid when the numerator is a subset of the denominator. 10 As an example, using estimates from Table 1, of the 751,400 persons enrolled in a course of study in Victoria, 47.9%, that is, 359,900 are males. The RSE for 751,400 is 1.8% and the RSE for 359,900 is 2.4% (see Table 1 Relative Standard Errors). Applying the above formula, the RSE for the proportion of males in Victoria enrolled in a course of study is: 11 Therefore, the SE for the proportion of males in Victoria enrolled in a course of study is 0.8 percentage points (=(1.6/100) x 47.9). Hence, there are about two chances in three that the proportion of males in Victoria enrolled in a course of study is between 47.1% and 48.7%, and 19 chances in 20 that the proportion is between 46.3% and 49.5%. DIFFERENCES 12 Published estimates may also be used to calculate the difference between two survey estimates (of numbers or proportions). Such an estimate is also subject to sampling error. The sampling error of the difference between two estimates depends on their SEs and the relationship (correlation) between them. An approximate SE of the difference between two estimates (xy) may be calculated by the following formula: 13 While this formula will only be exact for differences between separate and uncorrelated characteristics or sub populations, it provides a good approximation for the differences likely to be of interest in this publication. SIGNIFICANCE TESTING 14 A statistical significance test for any comparisons between estimates can be performed to determine whether it is likely that there is a difference between two corresponding population characteristics. The standard error of the difference between two corresponding estimates (x and y) can be calculated using the formula in paragraph 11. This standard error is then used to calculate the following test statistic: 15 If the value of this test statistic is greater than 1.96 then there is evidence, with a 95% level of confidence, of a statistically significant difference in the two populations with respect to that characteristic. Otherwise, it cannot be stated with confidence that there is a real difference between the populations with respect to that characteristic. 16 The imprecision due to sampling variability, which is measured by the SE, should not be confused with inaccuracies that may occur because of imperfections in reporting by respondents and recording by interviewers, and errors made in coding and processing data. Inaccuracies of this kind are referred to as nonsampling error, and they occur in any enumeration, whether it be a full count or sample. Every effort is made to reduce nonsampling error to a minimum by careful design of questionnaires, intensive training and supervision of interviewers, and efficient operating procedures. Document Selection These documents will be presented in a new window.
This page last updated 28 November 2012
