[image: A blue square with white text

Description automatically generated]Coding API Integration Examples

The ABS does not provide maintenance or support for end users’ own applications, but the following examples may provide a useful starting point for integrating with the coding API, or converting batch coding output.

The scripts and code snippets were written as a proof of concept and may not scale to large datasets.

Consider using a streaming approach if you encounter performance issues.

Contents

1.	Manager’s guide: technical integration requirements	2
Suggested workflow	2
Initial testing considerations	3
2.	Authentication	4
3.	Gathering Parameters	5
4.	Real-time (synchronous) coding	5
Single Record	5
Small Batch of Records	5
Coding your input	6
Reading the coded output	6
JSON output	6
CSV output	8
5.	Asynchronous batch coding	10
6.	Converting batch coding output	11
Example output from coding service (JSONL)	11
Converted CSV as shown in a spreadsheet	11
Converting to .csv - sample PowerShell script	12
Converting to .csv - sample JavaScript code	13
Converting to .csv - sample bash script (Linux command line interface)	14
Converting to .csv - sample Python script	15

[bookmark: _Toc206673483]Manager’s guide: technical integration requirements

The coding service is designed for formal integration and requires the expertise of a qualified technical team. This team should have the capability to call APIs and manage integrations with your agency’s internal data systems and workflow processes.

	
Your technical team will need to refer to the Coding Service User Guide to develop a custom integration that aligns with your organisation’s development standards. This may include the creation of automated workflows or user interfaces to enhance usability and efficiency.

To support your initial evaluation, we have provided a set of sample scripts. Please note that these are intended for demonstration purposes only – they are not production-ready and are not supported by our team.

[bookmark: _Toc206673484]Suggested workflow

Step 1: Initial Testing

· Managers should share the PowerShell starter scripts below with their technical teams. These scripts are designed to help assess suitability with your organisation’s systems and needs.
· These example scripts may be able to run in your organisation without modifications.
· If adjustments are required, your technical team should modify the scripts to suit your infrastructure. The ABS cannot support such customisations as they are highly user dependent.

Step 2: Evaluation and Planning

· Evaluate the results of using the service.
· Plan out the future integration and workflow that will meet your business needs.

Step 3: Implementation and Testing

· Refer to the Coding Service User Guide for technical details.
· Collaborate with your technical teams to implement and test the integration.
· For questions or clarification, contact coding.capability@abs.gov.au.

Step 4: Ongoing support and ownership

· Your organisation is responsible for its own integrations, supported by your internal technical teams.
· If issues arise that cannot be resolved internally, these may be escalated to the ABS for further assistance.

	
Steps 2-4 are expected to be managed through your organisation’s internal workflows. The remainder of this guide focuses on supporting Step 1 – the initial testing phase.

Once the integration is established, your technical teams will be best positioned to provide clear instructions for end users on how to operate and maintain the solution.

[bookmark: _Toc206673485]Initial testing considerations

When setting up the initial integration, your technical team will need to consider the following potential issues:

· Use of the coding service does not comply with your organisation’s existing data governance policies.
· You may need to obtain internal approvals to use the service. For more information on how the coding service handles user data, see Coding Service Security.
· There may be technical restrictions which prevent you from using the coding service. These can likely be modified once you have the required approvals.

· Access to the API is blocked by the organisation’s proxy server.
· Your organisation may use a web proxy to improve web performance, protect users’ privacy and restrict unapproved web content.
· Your integration may need to be modified to accommodate the proxy, or you may need to review your proxy settings to allow access to the coding API.

· Access to the API is blocked by the organisation’s firewall.
· A firewall may be used to block malicious traffic from entering your organisation’s network.
· Depending on how your firewall is configured, your technical team may need to explicitly allowlist access to the coding API.

· You cannot run PowerShell scripts in your organisation.
· Your technical team may need to develop a custom implementation in line with your organisation’s software development processes. Refer to the Coding Service User Guide for technical details.
·

[bookmark: _Toc206673486]Authentication

The following PowerShell script will:

1. construct an encoded authentication string from your provided client ID and client secret,
2. fetch a temporary authentication token from the AWS Cognito token issuer endpoint, and
3. set up the headers you will need for subsequent API calls.

You need to have an active authentication token to make any API calls. Authentication tokens last for one hour and can be reused between API calls and between users in an organisation.

You will need to set the following variables:

1. Cognito hostname: this will depend on whether you are registered as a public or partner user:
· Public users: “https://public-coder.auth.abs.gov.au”
· Partner users: “https://partner-coder.auth.abs.gov.au”
2. Client ID: provided to you upon registration.
3. Client secret: provided to you upon registration.

$cognitoHostname = "COGNITO_HOSTNAME";
$clientId = "CLIENT_ID";
$clientSecret = "CLIENT_SECRET";

Construct authorisation token (base64 version of <clientId:clientSecret>)
$authorisationToken =
[Convert]::ToBase64String([char[]]”$($clientId):$($clientSecret)”);

Call Cognito to get the access token
$headers = @{
'Authorization' = "Basic $($authorisationToken)"
'Content-Type' = "application/x-www-form-urlencoded"
};
$body = @{
grant_type = "client_credentials"
};
$cognitoResponse = Invoke-RestMethod -Method 'Post' -Uri "$($cognitoHostname)/oauth2/token" -Headers $headers -Body $body;
$authorisationToken = $cognitoResponse.access_token

Set headers for coding API calls
$headers = @{
'Authorization' = "$authorisationToken"
'Content-Type' = "application/json"
};

[bookmark: _Toc206673487]Gathering Parameters

These PowerShell examples only cover the use of the latest (default) model for each occupation classification, and up to three codes per record. To do this, set the following variables:

· API hostname: this will also depend on whether you are registered as a public or partner user.
· Public users: “https://public-coder.api.abs.gov.au”
· Partner users: “https://partner-coder.api.abs.gov.au”
· Coding topic: this is the short form of the classification you are coding against.
· Australian and New Zealand Standard Classification of Occupations: “anzsco”.
· Occupation Standard Classification for Australia: “osca”.

$hostname = "API_HOSTNAME"; (e.g: "https://public-coder.api.abs.gov.au/v1 ";)
$codingTopic = "CODING_TOPIC"; (e.g: "osca")

[bookmark: _Toc206673488]Real-time (synchronous) coding
The input for synchronous coding will depend on whether you are coding a single record or a small batch of records. One PowerShell example of each scenario is shown below.

[bookmark: _Toc206673489]Single Record
$body = @{
'record' = @{
occp_text = "software developer"
tasks_text = "writing code and unit tests"
}
'numberOfSuggestions' = 3
} | ConvertTo-Json

[bookmark: _Toc206673490]Small Batch of Records
$body = @{
'records' = (
@{
occp_text = "software developer"
tasks_text = "writing code and unit tests"
},
@{
occp_text = "Paramedic"
tasks_text = "respond to emergencies"
},
@{
recordId = "1"
occp_text = "Sales assistant"
tasks_text = ""
}
)
'numberOfSuggestions' = 3
} | ConvertTo-Json

[bookmark: _Toc206673491]Coding your input

Once you have set up your input body, run the following script to code it against the API and save the coded response.

$apiResponse = Invoke-RestMethod -Method 'Post' -Uri "$hostname/topics/$codingTopic/code" -Headers $headers -Body $body

[bookmark: _Toc206673492]Reading the coded output

You can then output the coded response in any of the following formats. See the bolded sections to edit the output file name.

[bookmark: _Toc206673493]JSON output
PowerShell Script:

$apiResponse | ConvertTo-Json > "output.json"

Example output (single code):

{
 "codeStatus": "successful",
 "input": {
 "tasks_text": "writing code and unit tests",
 "occp_text": "software developer"
 },
 "result": [
 {
 "codeCategory": "261313",
 "codeLabel": "Software Engineer",
 "codeConfidence": 0.61
 }, {
 "codeCategory": "261312",
 "codeLabel": "Developer Programmer",
 "codeConfidence": 0.44
 }, {
 "codeCategory": "261399",
 "codeLabel": "Software and Applications Programmer nec",
 "codeConfidence": 0.44
 }
]
}

Example output (small batch code):

[
 {
 "codeStatus": "successful",
 "input": {
 "occp_text": "software developer",
 "tasks_text": "writing code and unit tests"
 },
 "result": [{
 "codeCategory": "261313",
 "codeLabel": "Software Engineer",
 "codeConfidence": 0.61
 },{
 "codeCategory": "261312",
 "codeLabel": "Developer Programmer",
 "codeConfidence": 0.44
 },{
 "codeCategory": "261399",
 "codeLabel": "Software and Applications Programmers",
 "codeConfidence": 0.44
 }]
 }, {
 "codeStatus": "unsuccessful",
 "input": {
 "occp_text": "Paramedic, respond to emergencies"
 },
 "result": []
 }, {
 "recordId": "1",
 "codeStatus": "unsuccessful",
 "input": {
 "occp_text": "Sales assistant"
 },
 "result": []
 }
]

[bookmark: _Toc206673494]CSV output
PowerShell Script:

$apiResponse | ForEach-Object {
 $normalised = [ordered] @{}
 # Top level keys
 foreach ($key in @("recordId", "codeStatus")) {
 if ($_.PSObject.Properties[$key]) {
 $normalised[$key] = $_.$key
 } else {
 $normalised[$key] = $null
 }
 }
 # Expand input object
 foreach ($key in @("occp_text", "tasks_text")) {
 if ($_.PSObject.Properties["input"] -And $_.input.PSObject.Properties[$key]) {
 $normalised["input.$key"] = $_.input.$key
 } else {
 $normalised["input.$key"] = $null
 }
 }
 # Expand result array
 for ($i=1; $i -le 3; $i++) {
 foreach ($key in @("codeCategory", "codeLabel", "codeConfidence")) {
 if ($_.PSObject.Properties["result"] -And $_.result.Count -ge $i -And $_.result[$i-1].PSObject.Properties[$key]) {
 $normalised["result_$i.$key"] = $_.result[$i-1].$key
 } else {
 $normalised["result_$i.$key"] = $null
 }
 }
 }
 [PSCustomObject]$normalised
} | Export-Csv -Path "example.csv" -NoTypeInformation

Example output (single code):

	recordId
	codeStatus
	input
.occp_text
	input
.tasks_text
	result_1
.codeCategory
	result_1
.codeLabel
	result_1
.codeConfidence

	
	successful
	software developer
	writing code and unit tests
	261313
	Software Engineer
	0.61

(columns continued)
	result_2
.codeCategory
	result_2
.codeLabel
	result_2
.codeConfidence
	result_3
.codeCategory
	result_3
.codeLabel
	result_3
.codeConfidence

	261312
	Developer Programmer
	0.44
	261399
	Software and Applications Programmers nec
	0.44

Example output (small batch code):

	recordId
	codeStatus
	input
.occp_text
	input
.tasks_text
	result_1
.codeCategory
	result_1
.codeLabel
	result_1
.codeConfidence

	
	successful
	software developer
	writing code and unit tests
	261313
	Software Engineer
	0.61

	
	unsuccessful
	Paramedic, respond to emergencies
	
	
	
	

	1
	unsuccessful
	Sales assistant
	
	
	
	

(columns continued)
	result_2
.codeCategory
	result_2
.codeLabel
	result_2
.codeConfidence
	result_3
.codeCategory
	result_3
.codeLabel
	result_3
.codeConfidence

	261312
	Developer Programmer
	0.44
	261399
	Software and Applications Programmers nec
	0.44

	
	
	
	
	
	

	
	
	
	
	
	

[bookmark: _Toc206673495]Asynchronous batch coding

The process of asynchronous coding involves several steps, shown in the following sample PowerShell scripts:

1. Create a new batch coding operation

$apiResponse = Invoke-RestMethod -Method 'Post' -Uri "$hostname/topics/$codingTopic/batch-code" -Headers $headers -Body '{}'

2. Upload your input file (located at filename.jsonl)

$uri = $apiResponse.requestUploadUrl
$operationId = $apiResponse.operationId
upload input file
$putHeaders = @{
 'Content-Type'="application/json"
 'x-amz-server-side-encryption'="aws:kms"
 'x-amz-server-side-encryption-aws-kms-key-id'="$($apiResponse.bucketKmsKeyArn)"
};
$putResponse = Invoke-RestMethod -Method 'Put' -Uri "$($apiResponse.requestUploadUrl)" -Headers $putHeaders -InFile "filename.jsonl"

3. Check your operation status every 10-15 minutes, until you get the status “complete”

$apiResponse = Invoke-RestMethod -Method 'Get' -Uri "$hostname/topics/$codingTopic/batch-code/operations/$operationId" -Headers $headers
Write-Host ($apiResponse | Format-List | Out-String)

4. Download the output file to filename.jsonl

Invoke-RestMethod -Method 'Get' -Uri $apiResponse.responseDownloadUrl > "filename.jsonl"

[bookmark: _Toc206673496]Converting batch coding output

The asynchronous batch coding service generates a JSONL file containing the results for each input record. This is a standard format for internet communication and can be easily converted to other common data formats as part of an integrated application. One such format is CSV, which can be opened in Microsoft Excel.

[bookmark: _Toc206673497]Example output from coding service (JSONL)

{ "recordId": "1", "codeStatus": "successful", "input": { "occp_text": "software developer", "tasks_text": "writing code and unit tests" }, "result": { "codeCategory": "261313", "codeLabel": "Software Engineer", "codeConfidence": 0.98 } }
{ "recordId": "2", "codeStatus": "unsuccessful", "input": { "occp_text": "Paramedic", "tasks_text": "responding to medical emergencies" }, "suggestions": [{ "codeCategory": "411111", "codeLabel": "Ambulance Officer", "codeConfidence": 0.26 }, { "codeCategory": "411112", "codeLabel": "Intensive Care Ambulance Paramedic", "codeConfidence": 0.24 }] }
{ "recordId": "unknown", "codeStatus": "unsuccessful", "input": "this is not json", "error": "invalid JSON" }

[bookmark: _Toc206673498]Converted CSV as shown in a spreadsheet

	recordId
	codeStatus
	error
	input.occp_text
	input
.tasks_text
	result
.codeCategory
	result
.codeLabel

	1
	successful
	
	software developer
	writing code and unit tests
	261313
	Software Engineer

	2
	unsuccessful
	
	Paramedic
	responding to medical emergencies
	
	

	unknown
	unsuccessful
	invalid JSON
	
	
	
	

(columns continued)
	result
.codeConfidence
	suggestions_1
.codeCategory
	suggestions_1
.codeLabel
	suggestions_1
.codeConfidence
	suggestions_2
.codeCategory

	0.98
	
	
	
	Software Engineer

	
	411111
	Ambulance Officer
	0.26
	

	
	
	
	
	

(columns continued)
	suggestions_2
.codeLabel
	suggestions_2
.codeConfidence
	suggestions_3
.codeCategory
	suggestions_3
.codeLabel
	suggestions_3
.codeConfidence

	
	
	
	
	

	
	411111
	Ambulance Officer
	0.26
	

	
	
	
	
	

[bookmark: _Toc206673499]Converting to .csv - sample PowerShell script

Remember to replace the file names with your own files.

$rawObjects = Get-Content "example.jsonl" | ForEach-Object { $_ | ConvertFrom-JSON }
$normalisedObjects = $rawObjects | ForEach-Object {
 $normalised = [ordered] @{}
 # Top level keys
 foreach ($key in @("recordId", "codeStatus", "error")) {
 if ($_.PSObject.Properties[$key]) {
 $normalised[$key] = $_.$key
 } else {
 $normalised[$key] = $null
 }
 }
 # Expand input object
 foreach ($key in @("occp_text", "tasks_text")) {
 if ($_.PSObject.Properties["input"] -And $_.input.PSObject.Properties[$key]) {
 $normalised["input.$key"] = $_.input.$key
 } else {
 $normalised["input.$key"] = $null
 }
 }
 # Expand result object
 $codeFields = @("codeCategory", "codeLabel", "codeConfidence")
 foreach ($key in $codeFields) {
 if ($_.PSObject.Properties["result"] -And $_.result.PSObject.Properties[$key]) {
 $normalised["result.$key"] = $_.result.$key
 } else {
 $normalised["result.$key"] = $null
 }
 }
 # Expand suggestions array
 for ($i=1; $i -le 3; $i++) {
 foreach ($key in $codeFields) {
 if ($_.PSObject.Properties["suggestions"] -And $_.suggestions.Count -ge $i -And $_.suggestions[$i-1].PSObject.Properties[$key]) {
 $normalised["suggestions_$i.$key"] = $_.suggestions[$i-1].$key
 } else {
 $normalised["suggestions_$i.$key"] = $null
 }
 }
 }
 [PSCustomObject]$normalised
}
$normalisedObjects | Export-Csv -Path "example.csv" -NoTypeInformation

[bookmark: _Toc206673500]Converting to .csv - sample JavaScript code

Remember to replace the file names with your own files.

import { readFileSync, writeFileSync } from "fs";
import { stringify } from "csv-stringify/sync";

// Read code results from API
const data = readFileSync("example.jsonl", "utf-8")
 .split("\n").filter(Boolean).map(JSON.parse);

// Gather column names and flatten JSON objects
const columns = ["recordId", "codeStatus", "error"];
for (let inputField of ["occp_text", "tasks_text"]) {
 columns.push(`input.${inputField}`);
 data.map((record) => { record[`input.${inputField}`] = record.input
 ? record.input[inputField] : null;
 });
}
const codeFields = ["codeCategory", "codeLabel", "codeConfidence"];
for (let codeField of codeFields) {
 columns.push(`result.${codeField}`);
 data.map((record) => { record[`result.${codeField}`] = record.result
 ? record.result[codeField] : null;
 });
}
for (let i = 0; i < 3; i++) {
 for (let codeField of codeFields) {
 columns.push(`suggestions_${i + 1}.${codeField}`);
 data.map((record) => { record[`suggestions_${i + 1}.${codeField}`] =
 record.suggestions && record.suggestions[i]
 ? record.suggestions[i][codeField] : null;
 });
 }
}

// Output to CSV file
writeFileSync(
 "example.csv",
 stringify(data, {
 header: true,
 columns: columns,
 }),
);

[bookmark: _Toc206673501]Converting to .csv - sample bash script (Linux command line interface)

Remember to replace the file names with your own files. This script requires jq to be installed.

export set inputFile="example.jsonl"
export set outputFile="example.csv"
echo "recordId,codeStatus,error,input.occp_text,input.tasks_text,result.codeCategory,result.codeLabel,result.codeConfidence,suggestions_1.codeCategory,suggestions_1.codeLabel,suggestions_1.codeConfidence,suggestions_2.codeCategory,suggestions_2.codeLabel,suggestions_2.codeConfidence,suggestions_3.codeCategory,suggestions_3.codeLabel,suggestions_3.codeConfidence" > $outputFile
jq -s '.' $inputFile | jq -r '
 .[] |
 [
 .recordId // "",
 .codeStatus // "",
 .error // "",
 .input.occp_text // "",
 .input.tasks_text // "",
 .result.codeCategory // "",
 .result.codeLabel // "",
 .result.codeConfidence // "",
 .suggestions[0].codeCategory // "",
 .suggestions[0].codeLabel // "",
 .suggestions[0].codeConfidence // "",
 .suggestions[1].codeCategory // "",
 .suggestions[1].codeLabel // "",
 .suggestions[1].codeConfidence // "",
 .suggestions[2].codeCategory // "",
 .suggestions[2].codeLabel // "",
 .suggestions[2].codeConfidence // ""
] | @csv
' >> $outputFile

[bookmark: _Toc206673502]Converting to .csv - sample Python script

Remember to replace the file names with your own files.

import pandas as pd

Read the dictionary into a data frame and add a common prefix
def dict_to_df(data: dict, column_prefix: str):
 return pd.DataFrame([data]).add_prefix(column_prefix)

Expand each dictionary in a list into its own set of columns
def format_list(row, column_prefix):
 if not isinstance(row, list) or not row:
 row = [{}]
 # Concatenate custom data frames for each item in the list
 return pd.concat([dict_to_df(list_item, f'{column_prefix}_{i+1}.') for i, list_item in enumerate(row)], axis=1)

df = pd.read_json("example.jsonl", orient="records", lines=True)

Expand nested JSON objects
input_df = pd.json_normalize(df["input"]).add_prefix("input.")
result_df = pd.json_normalize(df["result"]).add_prefix("result.")
df = pd.concat([df.drop(columns=["input", "result"]), input_df, result_df], axis=1)

Expand suggestions list
suggestion_df = df['suggestions'].apply(lambda suggestions: format_list(suggestions, "suggestions"))
suggestion_df = pd.concat(suggestion_df.to_list(), ignore_index=True)
suggestion_df.index = df.index

merge the suggestions to the original data
merged_df = df.join(suggestion_df, how="left")
merged_df = merged_df.drop('suggestions', axis=1)

merged_df.to_csv("example.csv", index=False)

image1.jpeg
Australian
Bureau of
Statistics

