

1

ABS Occupation Coding Service

User Guide
(API integration guide)

June 2025

Rele
as

ed
 u

nd
er

 F
OI A

ct

turnag
Typewritten text
Document 1

2

Contents
1. Background ... 5

1.1 Introduction .. 5
1.2 Design .. 5
1.3 Security and Technology Standards .. 5
1.4 Using the guide ... 6

1.4.1 Synchronous Coding ... 6
1.4.2 Asynchronous Coding ... 6

1.5 Errors and Glossary ... 6
2. Getting Started ... 7

2.1 Pre-testing readiness ... 7
2.2 Terms of Use ... 7
2.3 Registration ... 7

3. Authentication ... 8
3.1 Get an authentication token .. 8

3.1.1 Request Syntax .. 8
3.1.2 Request Header Parameters .. 8
3.1.3 Response Syntax ... 8
3.1.4 Response Elements ... 8
3.1.5 Examples ... 9

3.2 Use an authentication token ... 9
3.2.1 Request Header Parameters .. 9

4. Coding service formats ... 10
4.1 Request formats ... 10
4.2 Recommended text input for coding .. 10
4.3 Multiple occupation entries .. 11

5. API Endpoints and HTTP methods ... 12
6. Gathering Parameters ... 13

6.1 Listing available topics ... 13
6.1.1 Request Syntax .. 13
6.1.2 URI Request Parameters .. 13
6.1.3 Request Body ... 13
6.1.4 Response Syntax ... 13
6.1.5 Response Elements ... 13
6.1.6 Errors ... 13
6.1.7 Examples ... 13

6.2 Getting the input format for the latest model for a topic .. 14
6.2.1 Request Syntax .. 14
6.2.2 URI Request Parameters .. 14
6.2.3 Request Body ... 14
6.2.4 Response Syntax ... 14
6.2.5 Response Elements ... 15
6.2.6 Errors ... 15
6.2.7 Example ... 15

6.3 Listing available models for a given topic ... 15
6.3.1 Request Syntax .. 16
6.3.2 URI Request Parameters .. 16
6.3.3 Request Body ... 16
6.3.4 Response Syntax ... 16
6.3.5 Response Elements ... 16
6.3.6 Errors ... 16
6.3.7 Examples ... 17

Rele
as

ed
 u

nd
er

 F
OI A

ct

3

] .. 17
7. Real-time (Synchronous) Coding .. 18

7.1 Coding against the latest model for a topic .. 18
7.1.1 Request Syntax .. 18
7.1.2 URI Request Parameters .. 19
7.1.3 Request Body ... 19
7.1.4 Response Syntax ... 19
7.1.5 Response Elements ... 20
7.1.6 Errors ... 21
7.1.7 Examples ... 21

7.2 Coding against a specific model... 25
7.2.1 Request Syntax .. 25
7.2.2 URI Request Parameters .. 25
7.2.3 Request Body ... 26
7.2.4 Response Syntax ... 26
7.2.5 Response Elements ... 27
7.2.6 Errors ... 27
7.2.7 Examples ... 28

8. Asynchronous Batch Coding .. 31
8.1 Getting an upload URL for input data to a batch coding operation ... 31

8.1.1 Request Syntax .. 31
8.1.2 URI Request Parameters .. 31
8.1.3 Request Body ... 32
8.1.4 Response Syntax ... 32
8.1.5 Response Elements ... 32
8.1.6 Errors ... 32
8.1.7 Examples ... 32

8.2 Uploading data for inference ... 33
8.2.1 Request Syntax .. 33
8.2.2 URI Request Parameters .. 34
8.2.3 Request Header Parameters .. 34
8.2.4 Request Body ... 34
8.2.5 Response Syntax ... 34
8.2.6 Errors ... 34
8.2.7 Examples ... 34

8.3 Checking the status of a batch inference operation .. 35
8.3.1 Request Syntax .. 35
8.3.2 URI Request Parameters .. 36
8.3.3 Request Body ... 36
8.3.4 Response Syntax ... 36
8.3.5 Response Elements ... 37
8.3.6 Errors ... 38
8.3.7 Examples ... 38

8.4 Downloading processed data from a complete operation .. 40
8.4.1 Response Elements ... 40
8.4.2 Examples ... 40

9. Reporting Issues .. 42
9.1 Request Syntax ... 42
9.2 URI Request Parameters .. 42
9.3 Request Body .. 42
9.4 Response Syntax ... 42
9.5 Example ... 42

10. Errors and suggested actions .. 43
11. Glossary of Inputs and Responses ... 45

Rele
as

ed
 u

nd
er

 F
OI A

ct

4

11.1 Model details ... 45
11.2 RecordObject .. 45
11.3 Response Objects .. 45

11.3.1 SynchronousCodeResponse .. 45
11.3.2 AsynchronousCodeResponse .. 45
11.3.3 CodedRecord .. 46

12. Security ... 47

Rele
as

ed
 u

nd
er

 F
OI A

ct

5

1. Background

1.1 Introduction

The Whole-of-Australian-Government (WoAG) Occupation Coding Service (‘the Coding Service’ or
‘the service’) has been designed by the Australian Bureau of Statistics (ABS) to provide a single
occupation coder across government, industry and the community.

The Coding Service will code occupation data to the latest Australian standard occupation
classification titles and codes.

1.2 Design

The Coding Service has been built with supervised machine-learning technology, to train
hierarchical support vector machine (HSVM) models that provide high-quality and comprehensive
automated coding against hierarchical classification categories. A Confidence Threshold is applied
to the service, ensuring that outputs are high quality.

The service is called via an Application Programming Interface (API), designed to support
integration across systems and platforms (including online forms and survey instruments) by
offering authenticated, standards-compliant endpoints.

All API services are hosted in Australia to comply with relevant data sovereignty and privacy
regulations.

Users have the option to register as a public user (throttled service), or a partner user (enhanced
capability). Public and partner registrations enable the following services:

Public user - Single record (synchronous) coding
- Small batch synchronous coding (up to 300 records)

Partner user - Single record (synchronous) coding
- Small batch synchronous coding (up to 300 records)
- Large-file asynchronous upload/download bulk coding (from 1

record to millions of records)

Public user real time coding API calls will be throttled at 1 request per second, within a ceiling of
100 requests per hour.

1.3 Security and Technology Standards

The WoAG Coding Service and API has been security assessed by an independent registered
assessor within the Australian Signals Directorate (ASD) Information Security Registered
Assessors Program (IRAP) Program. This assessment found the WoAG Coding Service and API
to have met the control and security objectives defined through the Australian Government
Information Security Manual (ISM).

The service has been built to comply to the Australian Information Security Manual (ISM) and the
Protective Security Policy Framework (PSPF). It leverages modern web API technologies in
accordance with the Australian Government’s API Standard and globally recognised security

Rele
as

ed
 u

nd
er

 F
OI A

ct

https://www.cyber.gov.au/resources-business-and-government/essential-cybersecurity/ism
https://www.protectivesecurity.gov.au/
https://architecture.digital.gov.au/application-programming-interfaces-apis-standard

6

frameworks. These standards ensure that the service is designed for safe, scalable integration
across government and public-facing systems.

Both public and partner service users will be registered, and will be provided with relevant
authorisation tokens to access the service.

See Section 12, Security, for more detail, including security controls to assist partner agencies in
assessing their risks when using this service.

1.4 Using the guide

This User Guide supports access to and use of the Occupation Coding Service. It is targeted
toward software developers and technical professionals integrating the service into a client
application.

It outlines the API endpoints available for accessing and using the service, and provides integration
instructions for calling the API.

The guide is structured to be followed sequentially from Section 2 (Getting started) through to
Section 6 (Gathering parameters).

Users will then proceed to Section 7 (Synchronous, or real-time coding) for single record or small
batch coding, or Section 8 (Asynchronous batch coding), depending on the data to be coded.

1.4.1 Synchronous Coding

The synchronous single-record coding service is designed for real-time usage (~1 second per
record). It is suitable for small volumes and live systems such as online forms, web surveys, or
ABS site tools.

Synchronous coding also supports coding small batches of records (up to 300 records) with similar
per-record timing.

Note: This service is not optimised for large volumes and should not be used for high-throughput
workloads. Use asynchronous coding for scalable batch processing.

1.4.2 Asynchronous Coding

Asynchronous batch coding is designed for large datasets (from a single record to millions of
records). While asynchronous coding is the most efficient service for larger batches of data, it is
not real-time, and may be queued during high load periods.

Batch uploads are submitted via the API, and status is checked via polling (operation endpoints).
Response times for batch requests may range from a few minutes to several hours depending on
file size, system demand and current queue load at the time of submission.

1.5 Errors and Glossary

• A list of errors and suggested actions is provided at Section 10.

• A glossary of input types and response formats is provided at Section 11.

Rele
as

ed
 u

nd
er

 F
OI A

ct

7

2. Getting Started

2.1 Pre-testing readiness

Before accessing the service, you will need to register for the coding service (see Section 2.3
below). You will also need to consider the following:

• What you need to set up to pass the API packet to your API endpoint (url).

• What data you are going to code.

• Whether you need single record coding, small batch coding (up to 300 records), or large
batch coding.

• Whether you need to clean the data first (for example, batch data will need to fit specific
formats).

See also Section 4, Coding Service formats.

2.2 Terms of Use

The use of the Coding Service API is governed by the Coding Service Terms of Use. All API users
will be required to accept these Terms of Use prior to gaining access to the service.

Users requesting access to the service must be appropriately authorised to accept the Terms of
Use on behalf of their organisation (link to webpage)

2.3 Registration

To register for the service and request client credentials, please complete the following request
form: (link to webpage)

Once you have registered, your ABS contact will email you:

• A client identifier, clientID.

• A client secret, clientSecret. This must be kept confidential as it is used when

authenticating your requests.

The ABS will monitor registrations for usage, and users may be notified via email if their access is

under review for removal due to inactivity.

Rele
as

ed
 u

nd
er

 F
OI A

ct

8

3. Authentication

An authentication token is required to use the Coding Service. This is a unique, time-limited access
key which is used to authenticate all API calls to the service.

3.1 Get an authentication token

To get an authentication token, you must first call the service’s authentication endpoint with an
authorisation header. More details are available in the AWS documentation, but the key input
parameters are described below:

3.1.1 Request Syntax

POST /oauth2/token HTTP/1.1
Host: https://partner-coder.auth.abs.gov.au
Content-Type: application/x-www-form-urlencoded
Authorisation: string
{
 grant_type: "client_credentials"
}

3.1.2 Request Header Parameters

Authorisation

Basic authorisation method with a base64 authorisation token (encodedAuthString),
computed from the client ID and client secret provided upon registration.

encodedAuthString can be computed via the bash command:

$ echo -n "${clientID}:${clientSecret}" | base64

Type: String

3.1.3 Response Syntax

HTTP/1.1 200 OK
Content-Type: application/json
{
 access_token: "string"
}

3.1.4 Response Elements

access_token

Your unique access token which can be used to authenticate all API calls to the coding
service.
Type: String

Rele

as
ed

 u
nd

er
 F

OI A
ct

https://docs.aws.amazon.com/cognito/latest/developerguide/token-endpoint.html

9

3.1.5 Examples

On registering for the coding service, this user was issued with the following:

- ClientID: “client1”
- ClientSecret: “secret123”

encodedAuthString should be the base64 encoding of “client1:secret123” and the entire

request is as follows:

Sample Request

POST /oauth2/token HTTP/1.1
Host: https://partner-coder.auth.abs.gov.au
Content-Type: application/x-www-form-urlencoded
Authorisation: Basic Y2xpZW50MTpzZWNyZXQxMjM=
{
 grant_type: "client_credentials"
}

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json
{
 access_token: "example token"
}

3.2 Use an authentication token

To authenticate against the coding API service, you will need to include your access token in the
header of any API calls.

Your token will last one hour from the time of issue, after which you will need to request a new
token.

The API calls are of a short duration, usually less than a few seconds. When initiated, each call will
check the authentication and then continue with the rest of the call. If the call was approved at the
start, it will return a response if the timer runs out.

Asynchronous batch calls may take longer to return results, and you may have to re-authorise to
receive the results.

3.2.1 Request Header Parameters

Authorisation

The authorisation token retrieved via the Authentication mechanism.
Type: String

Rele

as
ed

 u
nd

er
 F

OI A
ct

10

4. Coding service formats

4.1 Request formats

The coding service uses JSON format for the following services:

• Real-time (synchronous) public coding service

• Real-time partner coding service

• Real-time small batch coding service

It uses JSONL format for the large batch/bulk (asynchronous) partner coding service.

The GET Data method will return the following for each of the specified services for occupation
coding:

Service Returns

Real-time (synchronous) public coding
service

• One or more classification codes and
titles for the free text supplied

Real-time partner coding service

• One or more classification codes and
titles for the free text supplied

Real-time small batch coding service (up to
300 records)

• The best match 1-digit to 6-digit codes
and titles (moving up the classification
hierarchy from 6-digit to 1-digit level) for
the free text supplied

• If the coder cannot code the free text
supplied, it will provide 3 suggestions

Large batch/bulk (asynchronous) partner
coding service

• The best match 1-digit to 6-digit codes
and titles (moving up the classification
hierarchy from 6-digit to 1-digit level) for
the free text supplied

• If the coder cannot code the free text
supplied, it will provide 3 suggestions

4.2 Recommended text input for coding

The occupation coder will perform optimally when provided with both a job title and tasks as free
text inputs, as this is how the ML training was carried out. The coder will not perform as well with
just one text field entered (i.e if only the job title or only the task text is entered). If results are
unsuccessful, entering more information will help the Coding Service make better predictions.

Text strings can be a maximum of 100 characters only (a total of 100 characters for combined
occupation and task input text entries).

The coding service API will not accept custom data queries or query string parameters.

The occupation coding models are trained and optimised for use in an Australian context. They use
an English character set for coding responses that relate to individuals employed in legal
occupations that fall within the definition and scope of official ABS occupation classifications. For
example, ‘retiree’ and ‘homemaker’ do not return codes, as these are not occupations defined in
official ABS occupation classifications.

Rele
as

ed
 u

nd
er

 F
OI A

ct

11

The coding service has been trained on English inputs only. The service accepts printable ASCII
characters, which includes all English letters and connectives, but excludes certain accents,
foreign currency symbols and control characters like file endings or backspace. Including a bad
character may result in an Invalid request body error.

The contextual assumption of the input text is that the text relates to and describes a person’s job.
The coder, being able to recognise a very broad vocabulary, will attempt to code all input text,
regardless of context. Therefore, users need to ensure a contextual fit between their input data and
the coding task being undertaken by the coder.

For instance, if a person describes their job as a ‘prisoner’, the Coding Service assumes a context
that the occupation to be coded works with prisoners in some way, and codes to ‘Correctional
Officer’. Likewise, the input text ‘baby’ codes to ‘Nanny’.

4.3 Multiple occupation entries

The service is designed to provide a single occupation code and title for a single occupation
record. If multiple occupations per record are entered in the occupation title text input, the coder
will attempt to code the provided text to a best fit single occupation code at the most detailed level.

The output will reflect the training data and will depend on how many times the two jobs were
present together in the training data. The Coding Service will default to whatever is most commonly
found in the training data.

If multiple occupations are present, you will need to format each job as a separate request.

Rele
as

ed
 u

nd
er

 F
OI A

ct

12

5. API Endpoints and HTTP methods

The API endpoints and their HTTP methods are outlined below in both the table and the diagram.

Endpoint HTTP verb
/v1/topics GET

Retrieve a list of available topics.
/v1/topics/{topic} GET

Describes the input format for the given topic.
/v1/topics/{topic}/code POST

Synchronously codes a single record or small batch of records against the
latest model for a given topic.

/v1/topics/{topic}/models GET
Lists the available models and their input formats for a given topic.

/v1/topics/{topic}/models/latest GET
Describes the input format for the latest model for a given topic.

/v1/topics/{topic}/models/{model}/code POST
Synchronously codes a single record or small batch of records against a
specific model for the given topic.

/v1/topics/{topic}/batch-code POST
Creates a new asynchronous batch inference operation against the latest
model for a given topic.

/v1/topics/{topic}/models/{model}/batch-code POST
Creates a new asynchronous batch inference operation against a specific
model for the given topic.

/v1/topics/{topic}/batch-code/operations/{operation_id} GET
Checks the status of a batch inference operation.

/v1/topics/{topic}/models/{model}/batch-code/operations/{operation_id} GET
Checks the status of a batch inference operation.

/v1/security.txt GET
Returns contact details for reporting issues.

 Rele
as

ed
 u

nd
er

 F
OI A

ct

13

6. Gathering Parameters

6.1 Listing available topics

Before coding against a topic (classification), you must confirm that the topic is supported by the
application. You will also need to record its corresponding uriName for further calls to the API.

6.1.1 Request Syntax

GET /v1/topics HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-type: application/json
Authorisation: string

6.1.2 URI Request Parameters

The request does not use any URI parameters.

6.1.3 Request Body

The request does not have a request body.

6.1.4 Response Syntax

HTTP/1.1 200 OK
Content-type: application/json
[
 {
 "uriName": "string",
 "fullName": "string"
 }
]

6.1.5 Response Elements

If the action is successful, the service sends back an HTTP 200 response. The API returns an
array of Topic objects representing all the coding topics currently supported by the API.

6.1.6 Errors

For information about the errors that are common to all actions, see Section 10, Errors and
suggested actions.

6.1.7 Examples

Sample Request

GET /v1/topics HTTP/1.1
Host: https://partner-coder.api.abs.gov.au

Rele
as

ed
 u

nd
er

 F
OI A

ct

14

Content-type: application/json
Authorisation: example token

Sample Response

HTTP/1.1 200 OK
Content-type: application/json
[
 {
 "uriName": "osca",
 "fullName": "OSCA - Occupation Standard Classification for Australia"
 }
]

6.2 Getting the input format for the latest model for a topic

Different models are coded against different input formats. If you are using the latest (default)
model for your specified topic, you can get the input format via the following mechanism.

If you are using another model, the input format will be provided as part of the list of available
models.

6.2.1 Request Syntax

GET /v1/topics/{topic}/models/latest HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-type: application/json
Authorisation: string

6.2.2 URI Request Parameters

topic
The uriName for the coding topic of interest. This can be acquired by listing the available

topics.
Required: Yes

6.2.3 Request Body

The request does not have a request body.

6.2.4 Response Syntax

HTTP/1.1 200 OK
Content-type: application/json
{
 "modelId": "string",
 "modelVersion": number,
 "modelReleaseDate": "string",
 "modelType": "string",
 "inputFormat": [

Rele
as

ed
 u

nd
er

 F
OI A

ct

15

 "string"
],
 "topicStandard": "string",
 "topicVersion": "string"
}

6.2.5 Response Elements

If the action is successful, the service sends back an HTTP 200 response. The API returns a Model
object representing the latest model for the given topic, which includes the expected input format.

6.2.6 Errors

For information about the errors that are common to all actions, see Section 10, Errors and
suggested actions.

6.2.7 Example

Getting the latest occupation model

Sample Request

GET /v1/topics/osca/models/latest HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-type: application/json
Authorisation: example token

Sample Response

HTTP/1.1 200 OK
Content-type: application/json

{
 "modelId": "00000000-0000-0000-0000-000000000000",
 "modelVersion": 2,
 "modelReleaseDate": "2023-12-20T06:06:44.514Z",
 "modelType": "hsvm2",
 "inputFormat": [
 "occp_text",
 "tasks_text"
],
 "topicStandard": "OSCA - Occupation Standard Classification for Australia",
 "topicVersion": "2024"
}

6.3 Listing available models for a given topic

To code against a specific machine learning model, you can browse the available models and their
input formats by calling this endpoint.

Rele
as

ed
 u

nd
er

 F
OI A

ct

16

6.3.1 Request Syntax

GET /v1/topics/{topic}/models HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-type: application/json
Authorisation: string

6.3.2 URI Request Parameters

topic
The uriName for the coding topic of interest. This can be acquired by listing the available topics.

Required: Yes

6.3.3 Request Body

The request does not have a request body.

6.3.4 Response Syntax

HTTP/1.1 200 OK
Content-type: application/json
[
 {
 "modelId": "string",
 "modelVersion": number,
 "modelReleaseDate": "string",
 "modelType": "string",
 "inputFormat": [
 "string"
],
 "topicStandard": "string",
 "topicVersion": "string"
 }
]

6.3.5 Response Elements

If the action is successful, the service sends back an HTTP 200 response. The API returns either a
SynchronousCodeResponse object or an array of SynchronousCodeResponse objects
corresponding to the input records.

6.3.6 Errors

The following errors may occur when calling this service:

No models found for topic {topic}

No models are available for the provided topic parameter. Please reach out to your ABS
contact to investigate why no model is available.
HTTP Status Code: 500 (Internal Server Error)

Rele
as

ed
 u

nd
er

 F
OI A

ct

17

For information about the errors that are common to all actions, see Section 10, Errors and
suggested actions.

6.3.7 Examples

Listing all anzsco models

Sample Request

GET /v1/topics/anzsco/models HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-type: application/json
Authorisation: example token

Sample Response

HTTP/1.1 200 OK
Content-type: application/json
[
 {
 "modelId": "00000000-0000-0000-0000-000000000002",
 "modelVersion": 2,
 "modelReleaseDate": "2023-12-20T06:06:44.514Z",
 "modelType": "hsvm2",
 "inputFormat": [
 "occp_text",
 "tasks_text"
],
 "topicStandard": " ANZSCO - Australian and New Zealand Standard
Classification of Occupations",
 "topicVersion": "2022"
 },
 {
 "modelId": "00000000-0000-0000-0000-000000000001",
 "modelVersion": 1,
 "modelReleaseDate": "2025-05-20T06:06:44.514Z",
 "modelType": "hsvm2",
 "inputFormat": [
 "occp_text",
 "tasks_text"
],
 "topicStandard": " ANZSCO - Australian and New Zealand Standard
Classification of Occupations",
 "topicVersion": "2022"
 }
]

Rele

as
ed

 u
nd

er
 F

OI A
ct

18

7. Real-time (Synchronous) Coding

The coding service has been designed to apply a classification code and title to a free text entry.
The single record coding feature will enable public facing webforms and other points of data
collection to have codes and titles suggested in real time (~1 second).

A small JSON file of up to 300 text records can also be coded synchronously.

Note: when you are running a synchronous small batch, the whole packet needs to be syntactically
correct. If the syntax fails, the whole batch will fail. As the operation is combined for the whole
group of records, none of the records will be able to be coded if there is an error in any record.

When to use synchronous or asynchronous coding

Synchronous coding should only be used for single record coding or small batches of data. If
you are coding 900 records, for example, it will be possible to run them in three small batch
submissions.

Asynchronous large batch coding is recommended if you need to code or recode a large volume
of data. (Large batch coding can be used to code from 1 record to millions of records.)

7.1 Coding against the latest model for a topic

This endpoint is used to code a single or small batch of free text records against the specified
coding topic, using the latest model for that topic.

7.1.1 Request Syntax

Depending on whether you are coding a single record or a small batch of records, your request will
follow one of the following formats:

1. Coding a single free text record

POST /v1/topics/{topic}/code HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-type: application/json
Authorisation: string

{
 "record": {
 "occp_text": "string",
 "tasks_text": "string"
 },
 "numberOfSuggestions": number
}

2. Coding a small batch of free text records

Rele
as

ed
 u

nd
er

 F
OI A

ct

19

POST /v1/topics/{topic}/code HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-type: application/json
Authorisation: string
{
 "records": [
 {
 "recordId": "string",
 "occp_text": "string",
 "tasks_text": "string"
 },
],
 "numberOfSuggestions": number
}

7.1.2 URI Request Parameters

topic

The uriName of the topic against which the record is coded. This can be acquired by listing

the available topics.
Required: Yes

7.1.3 Request Body
The request accepts the following data in JSON format:

record
The free text record to be coded.

Type: Record object, following the input format specified by the model.
Required: No, but either record or records must be provided.

records
The free text records to be coded.
Type: Array of Record objects, following the input format specified by the model. Each item
may optionally specify an additional string value recordId.

Length Constraints: Minimum length of 1. Maximum length of 300.
Required: No, but either record or records must be provided.

numberOfSuggestions
The number of suggested codes to be provided if the record cannot be coded successfully.
The maximum value of this field is 16.
Type: Number
Required: No

7.1.4 Response Syntax

The response of this endpoint will depend on whether your input request contained a single record
or a small batch of records.

Rele

as
ed

 u
nd

er
 F

OI A
ct

20

1. Coding a single free text record

HTTP/1.1 200 OK
Content-type: application/json
{
 "codeStatus": "string",
 "input": {
 "occp_text": "string",
 "tasks_text": "string"
 },

 "result": [
 {
 "codeCategory": "string",
 "codeLabel": "string",
 "codeConfidence": number
 }
],
}

2. Coding a small batch of free text records

HTTP/1.1 200 OK
Content-type: application/json
[
 {
 "recordId": "string",
 "codeStatus": "string",
 "input": {
 "occp_text": "string",
 "tasks_text": "string"
 },

 "result": [
 {
 "codeCategory": "string",
 "codeLabel": "string",
 "codeConfidence": number
 }
],
 }
]

7.1.5 Response Elements

If the action is successful, the service sends back an HTTP 200 response. The API returns either a
SynchronousCodeResponse object or an array of SynchronousCodeResponse objects

corresponding to the input records.

Rele

as
ed

 u
nd

er
 F

OI A
ct

21

7.1.6 Errors

The following errors may occur when calling this service:

Malformed record found in request

The free text input did not match the expected format for the model. You can check what the
expected format is for a given topic here.
HTTP Status Code: 400 (Bad Request)

Batch input contained no records
You tried to code a small batch of records but the records array was empty. Check that you
have provided at least one record to be coded and that your request body is correctly
formatted.
HTTP Status Code: 400 (Bad Request)

Batch records exceeds length limit of 300

You tried to code too many records at once using the synchronous small batch service. Retry
with a smaller batch size, or consider using the asynchronous batch coding service.
HTTP Status Code: 400 (Bad Request)

There are record(s) outside the min or max char limit
One or more records provided for synchronous coding had too many or too few characters.
See 4.2. The error will direct you to the problematic record(s) which should either be excluded
or amended to meet the character limits.
HTTP Status Code: 400 (Bad Request)

For information about the errors that are common to all actions, see Section 10, Errors and
suggested actions.

7.1.7 Examples

Successfully coded a single record using only one free text field

Sample Request

POST /v1/topics/osca/code HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-type: application/json
Authorisation: example token
{
 "record": {
 "occp_text": "Software developer. Writes code, tests"
 },
 "numberOfSuggestions": 3
}

Sample Response

HTTP/1.1 200 OK
Content-type: application/json

Rele
as

ed
 u

nd
er

 F
OI A

ct

22

{
 "codeStatus": "successful",
 "input": {
 "occp_text": "Software developer. Writes code, tests"
 },
 "result": [{
 "codeCategory": "261313",
 "codeLabel": "Software Engineer",
 "codeConfidence": 0.6093962788581848
 },{
 "codeCategory": "261312",
 "codeLabel": "Developer Programmer",
 "codeConfidence": 0.43940293565392494
 },{
 "codeCategory": "261399",
 "codeLabel": "Software and Applications Programmers nec",
 "codeConfidence": 0.43756575286388397
 }]
}

Successfully coded a single record using all free text fields

Sample Request

POST /v1/topics/osca/code HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-type: application/json
Authorisation: example token
{
 "record": {
 "occp_text": "software developer",
 "tasks_text": "writing code and unit tests"
 },
 "numberOfSuggestions": 3
}

Sample Response

HTTP/1.1 200 OK
Content-type: application/json

{
 "codeStatus": "successful",
 "input": {
 "occp_text": "software developer",
 "tasks_text": "writing code and unit tests"
 },
 "result": [{
 "codeCategory": "261313",
 "codeLabel": "Software Engineer",
 "codeConfidence": 0.6093962788581848
 },{

Rele
as

ed
 u

nd
er

 F
OI A

ct

23

 "codeCategory": "261312",
 "codeLabel": "Developer Programmer",
 "codeConfidence": 0.43940293565392494
 },{
 "codeCategory": "261399",
 "codeLabel": "Software and Applications Programmers nec",
 "codeConfidence": 0.43756575286388397
 }]
}

Unsuccessfully coded a single record using only one free text field

Sample Request

POST /v1/topics/osca/code HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-type: application/json
Authorisation: example token

{
 "record": {
 "occp_text": "Software developer. Writes code, tests"
 },
 "numberOfSuggestions": 3
}

Sample Response

HTTP/1.1 200 OK
Content-type: application/json

{
 "codeStatus": "unsuccessful",
 "input": {
 "occp_text": "Software developer. Writes code, tests"
 },
 "result": []
}

Coding a small batch of records

Sample Request

POST /v1/topics/osca/code HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-type: application/json
Authorisation: example token

{
 "records": [
 {
 "occp_text": "software developer",

Rele
as

ed
 u

nd
er

 F
OI A

ct

24

 "tasks_text": "writing code and unit tests"
 }, {
 "occp_text": "Paramedic, respond to emergencies"
 }, {
 "recordId": "1",
 "occp_text": "Sales assistant"
 }
],
 "numberOfSuggestions": 3
}

Sample Response

HTTP/1.1 200 OK
Content-type: application/json

[
 {
 "codeStatus": "successful",
 "input": {
 "occp_text": "software developer",
 "tasks_text": "writing code and unit tests"
 },
 "result": [{
 "codeCategory": "261313",
 "codeLabel": "Software Engineer",
 "codeConfidence": 0.6093962788581848
 },{
 "codeCategory": "261312",
 "codeLabel": "Developer Programmer",
 "codeConfidence": 0.43940293565392494
 },{
 "codeCategory": "261399",
 "codeLabel": "Software and Applications Programmers",
 "codeConfidence": 0.43756575286388397
 }]
 }, {
 "codeStatus": "unsuccessful",
 "input": {
 "occp_text": "Paramedic, respond to emergencies"
 },
 "result": []
 }, {
 "recordId": "1",
 "codeStatus": "unsuccessful",
 "input": {
 "occp_text": "Sales assistant"
 },
 "result": []
 }
]

Rele
as

ed
 u

nd
er

 F
OI A

ct

25

7.2 Coding against a specific model

This endpoint is used to code a single or small batch of free text records against the specified
coding topic, using the specified model.

7.2.1 Request Syntax

Depending on whether you are coding a single record or a small batch of records, your request will
follow one of the following formats:

1. Coding a single free text record

POST /v1/topics/{topic}/models/{model}/code HTTP/1.1
Host: https://partner-coder.api.abs.gov.au

Content-type: application/json
Authorisation: string
{
 "record": {
 "occp_text": "string",
 "tasks_text": "string"
 }
 "numberOfSuggestions": number
}

2. Coding records against a specific model

POST /v1/topics/{topic}/models/{model}/code HTTP/1.1
Host: https://partner-coder.api.abs.gov.au

Content-type: application/json
Authorisation: string

{
 "records": [
 {
 "recordId": "string",
 "occp_text": "string",
 "tasks_text": "string"
 }
],
 "numberOfSuggestions": number
}

7.2.2 URI Request Parameters

topic

The uriName of the topic against which the record is coded. This can be acquired by listing

the available topics.
Required: Yes
 Rele

as
ed

 u
nd

er
 F

OI A
ct

26

model
The model GUID for the model you would like to use to code records. This can be acquired
by listing the available models for your topic.
Required: Yes

7.2.3 Request Body

The request accepts the following data in JSON format:

record
The free text record to be coded.
Type: Record object, following the input format specified by the model.
Required: No, but either record or records must be provided.

records
The free text records to be coded.
Type: Array of Record objects, following the input format specified by the model. Each item
may optionally specify an additional string value recordId.
Length Constraints: Minimum length of 1. Maximum length of 300.
Required: No, but either record or records must be provided.

numberOfSuggestions
The number of suggested codes to be provided if the record cannot be coded successfully.
The maximum value of this field is 16.
Type: Number
Required: No

7.2.4 Response Syntax

The response of this endpoint will depend on whether your input request contained a single record
or a small batch of records.

1. Coding a single free text record

HTTP/1.1 200 OK
Content-type: application/json
{
 "codeStatus": "string",
 "input": {
 "occp_text": "string",
 "tasks_text": "string"
 },
 "result": [
 {
 "codeCategory": "string",
 "codeLabel": "string",
 "codeConfidence": number
 }
],
}

Rele
as

ed
 u

nd
er

 F
OI A

ct

27

2. Coding a small batch of free text records

HTTP/1.1 200 OK
Content-type: application/json
[
 {
 "recordId": "string",
 "codeStatus": "string",
 "input": {
 "occp_text": "string",
 "tasks_text": "string"
 },

 "result": [
 {
 "codeCategory": "string",
 "codeLabel": "string",
 "codeConfidence": number
 }
],
 }
]

7.2.5 Response Elements

If the action is successful, the service sends back an HTTP 200 response. The API returns either a
SynchronousCodeResponse object or an array of SynchronousCodeResponse objects
corresponding to the input records.

7.2.6 Errors

The following errors may occur when calling this service:

Malformed record found in request

The free text input did not match the expected format for the model. You can check what the
expected format is for a given topic here.
HTTP Status Code: 400 (Bad Request)

Batch input contained no records
You tried to code a small batch of records but the records array was empty. Check that you
have provided at least one record to be coded and that your request body is correctly
formatted.
HTTP Status Code: 400 (Bad Request)

Batch records exceeds length limit of 300

You tried to code too many records at once using the synchronous small batch service. Retry
with a smaller batch size, or consider using the asynchronous batch coding service.
HTTP Status Code: 400 (Bad Request)
 Rele

as
ed

 u
nd

er
 F

OI A
ct

28

There are record(s) outside the min or max char limit
One or more records provided for synchronous coding had too many or too few characters.
See Section 4.2. The error will direct you to the problematic record(s) which should either be
excluded or amended to meet the character limits.
HTTP Status Code: 400 (Bad Request)

For information about the errors that are common to all actions, see Section 10, Errors and
suggested actions.

7.2.7 Examples

Successfully coded a single record using all free text fields

Sample Request

POST /v1/topics/osca/models/GUID/code HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-type: application/json
Authorisation: example token
{
 "record": {
 "occp_text": "software developer",
 "tasks_text": "writing code and unit tests"
 },
 "numberOfSuggestions": 3
}

Sample Response

HTTP/1.1 200 OK
Content-type: application/json

{
 "codeStatus": "successful",
 "input": {
 "occp_text": "software developer",
 "tasks_text": "writing code and unit tests"
 },
 "result": [{
 "codeCategory": "261313",
 "codeLabel": "Software Engineer",
 "codeConfidence": 0.6093962788581848
 },{
 "codeCategory": "261312",
 "codeLabel": "Developer Programmer",
 "codeConfidence": 0.43940293565392494
 },{
 "codeCategory": "261399",
 "codeLabel": "Software and Applications Programmers nec",
 "codeConfidence": 0.43756575286388397
 }]
}

Rele
as

ed
 u

nd
er

 F
OI A

ct

29

Coding a small batch of records

Sample Request

POST /v1/topics/osca/models/GUID/code HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-type: application/json
Authorisation: example token

{
 "records": [
 {
 "occp_text": "software developer",
 "tasks_text": "writing code and unit tests"
 }, {
 "occp_text": "Paramedic, respond to emergencies"
 }, {
 "recordId": "1",
 "occp_text": "Sales assistant"
 }
],
 "numberOfSuggestions": 3
}

Sample Response

HTTP/1.1 200 OK
Content-type: application/json

[
 {
 "codeStatus": "successful",
 "input": {
 "occp_text": "software developer",
 "tasks_text": "writing code and unit tests"
 },
 "result": [{
 "codeCategory": "261313",
 "codeLabel": "Software Engineer",
 "codeConfidence": 0.6093962788581848
 },{
 "codeCategory": "261312",
 "codeLabel": "Developer Programmer",
 "codeConfidence": 0.43940293565392494
 },{
 "codeCategory": "261399",
 "codeLabel": "Software and Applications Programmers",
 "codeConfidence": 0.43756575286388397
 }]
 }, {
 "codeStatus": "unsuccessful",

Rele
as

ed
 u

nd
er

 F
OI A

ct

30

 "input": {
 "occp_text": "Paramedic, respond to emergencies"
 },
 "result": []
 }, {
 "recordId": "1",
 "codeStatus": "unsuccessful",
 "input": {
 "occp_text": "Sales assistant"
 },
 "result": []
 }
]

Rele
as

ed
 u

nd
er

 F
OI A

ct

31

8. Asynchronous Batch Coding

In addition to real-time coding of single records and small batches of data, the coding service has
been designed to code large datasets through asynchronous batching (that is, returning data after
a short period of time).

The asynchronous service can be used for as little as one record, up to millions of records.

Note: Asynchronous batch coding should be used if you need to code or recode a large volume of
data. While it is the most efficient method of coding larger datasets, it is not real-time, and may be
subject to queueing during high load periods.

8.1 Getting an upload URL for input data to a batch coding operation

This endpoint is used to create an asynchronous batch inference operation. The API will return a
location where you can upload your input file and begin your batch inference operation.

8.1.1 Request Syntax

Depending on whether you are specifying a model against which to code your records, your
request will follow one of the following formats:

1. Coding records against the latest model

POST /v1/topics/{topic}/batch-code HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-type: application/json
Authorisation: string

2. Coding records against a specific model

POST /v1/topics/{topic}/models/{model}/batch-code HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-type: application/json
Authorisation: string

8.1.2 URI Request Parameters

topic

The uriName of the topic against which the record is coded. This can be acquired by listing the

available topics.
Required: Yes

model
The model GUID for the model you would like to use to code records. This can be acquired by
listing the available models for your topic.
Required: No

Rele
as

ed
 u

nd
er

 F
OI A

ct

32

8.1.3 Request Body

The request does not have a request body.

8.1.4 Response Syntax

HTTP/1.1 200 OK
Content-type: application/json

{
 "requestUploadUrl": "string",
 "operationId": "string",
 "bucketKmsKeyArn": "string"
}

8.1.5 Response Elements

If the action is successful, the service sends back an HTTP 200 response. The following data is
returned in JSON format by the service:

requestUploadUrl
A URL where the records file is to be uploaded.
Type: String

operationId
The identifier of the operation, to be used to check the status of this job. This must be
recorded at this point to maintain access to the operation.
Type: String, in GUID format.

bucketKmsKeyArn
A parameter used by the ABS system to ensure the operation’s input data is from the same
user who created the operation. This must be passed into the x-amz-server-side-
encryption-aws-kms-key-id header when uploading your input file.
Type: String

8.1.6 Errors

For information about the errors that are common to all actions, see Section 10, Errors and
suggested actions.

8.1.7 Examples

Creating a new operation to code against the latest model for occupation

Sample Request

POST /v1/topics/osca/batch-code HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-Type: application/json
Authorisation: example token

Rele
as

ed
 u

nd
er

 F
OI A

ct

33

Sample Response

HTTP/1.1 200 OK
Content-type: application/json

{
 "requestUploadUrl": "https://domain/endpoint?queries",
 "operationId": "00000000-0000-0000-0000-000000000000",
 "bucketKmsKeyArn": "xyz"
}

Creating a new operation to code against a specified model

Sample Request

POST /v1/topics/anzsco/models/GUID/batch-code HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-Type: application/json
Authorisation: example token

Sample Response

HTTP/1.1 200 OK
Content-type: application/json

{
 "requestUploadUrl": "https://domain/endpoint?queries",
 "operationId": "00000000-0000-0000-0000-000000000000",
 "bucketKmsKeyArn": "xyz"
}

8.2 Uploading data for inference

Once you have created an inference operation, you will need to upload your data to the provided
requestUploadUrl. This is a pre-signed HTTP request which is managed by the AWS S3 server,

and the expected input is outlined below.

8.2.1 Request Syntax

PUT requestUploadUrl HTTP/1.1
x-amz-server-side-encryption: aws:kms
x-amz-server-side-encryption-aws-kms-key-id: string

{ "recordId": "string", "occp_text": "string", "tasks_text": "string" }
...

 Rele
as

ed
 u

nd
er

 F
OI A

ct

34

8.2.2 URI Request Parameters

requestUploadUrl

The location where the input file is being uploaded. This is provided when you first create
the inference operation.
Type: String

8.2.3 Request Header Parameters

Please note: the x-amz-server-side-encryption header is not variable and should always have

the value aws:kms.

x-amz-server-side-encryption-aws-kms-key-id
A parameter used by the ABS system to ensure the input data is from the same user who
created the operation. This is provided in the bucketKmsKeyArn field when you first create
your inference operation.
Type: String

8.2.4 Request Body

The request accepts your input file in JSONL format. The maximum input file size is 5GB. All lines
of input must contain the same fields, and these fields should satisfy the Record type for the
relevant topic/model as specified when creating the upload URL. You may specify the additional
field outlined below.

recordId

An identifier for the record being coded. This need not be unique.
Type: String
Required: No

8.2.5 Response Syntax

HTTP/1.1 200 OK

8.2.6 Errors

For information about the errors that are common to all actions, see Section 10, Errors and
suggested actions.

8.2.7 Examples

Specifying all free text inputs and a record identifier

Sample Request

PUT https://domain/endpoint?queries HTTP/1.1
x-amz-server-side-encryption: aws:kms
x-amz-server-side-encryption-aws-kms-key-id: xyz

{ "recordId": "1", "occp_text": "software developer", "tasks_text": "writing
code and unit tests" }

Rele
as

ed
 u

nd
er

 F
OI A

ct

35

{ "recordId": "2", "occp_text": "Paramedic", "tasks_text": "responding to
medical emergencies" }
...

Sample Response

HTTP/1.1 200 OK

Specifying a single free text input and a record identifier

Sample Request

PUT https://domain/endpoint?queries HTTP/1.1
x-amz-server-side-encryption: aws:kms
x-amz-server-side-encryption-aws-kms-key-id: xyz

{ "recordId": "1", "occp_text": "software developer, writes code and unit
tests" }
{ "recordId": "2", "occp_text": "Paramedic, respond to emergencies" }
...

Sample Response

HTTP/1.1 200 OK

Specifying all free text inputs and no record identifier

Sample Request

PUT https://domain/endpoint?queries HTTP/1.1
x-amz-server-side-encryption: aws:kms
x-amz-server-side-encryption-aws-kms-key-id: xyz

{ "occp_text": "software developer", "tasks_text": "writing code and unit
tests" }
{ "occp_text": "Paramedic", "tasks_text": "responding to medical emergencies" }
...

Sample Response

HTTP/1.1 200 OK

8.3 Checking the status of a batch inference operation

This endpoint is used to check the status of your batch inference job. When the status of your job
is complete, the service will return a URL to copy into your web browser to retrieve your coded
data.

8.3.1 Request Syntax

Depending on whether you are specifying a model against which to code your records, your
request will follow one of the following formats. The application backend handles these requests

Rele
as

ed
 u

nd
er

 F
OI A

ct

36

identically, so you don’t need to worry about recording the model which you used when you began
the operation.

1. Checking an operation by specifying the topic only

GET /v1/topics/{topic}/batch-code/operations/{operation_id} HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-type: application/json
Authorisation: string

2. Checking an operation by specifying both the topic and model

GET /v1/topics/{topic}/models/{model}/batch-code/operations/{operation_id}
HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-type: application/json
Authorisation: string

8.3.2 URI Request Parameters

topic
The uriName of the topic against which the record is coded. This can be acquired by listing the

available topics.
Required: Yes

model
The model GUID for the model you would like to use to code records. This can be acquired by
listing the available models for your topic.
Required: No

operation_id
The GUID of the operation to get the status of. This value is provided when you first create
your inference operation.
Required: Yes

8.3.3 Request Body

The request does not have a request body.

8.3.4 Response Syntax

HTTP/1.1 200 OK
Content-type: application/json

{
 "operationStatus": "string",
 "responseDownloadUrl": "string",
 "error": "string"
}

Rele

as
ed

 u
nd

er
 F

OI A
ct

37

8.3.5 Response Elements

If the specified operation exists, the service sends back an HTTP 200 OK status code. The status
of the operation will dictate the contents of the response. This data is returned in JSON format by
the service:

operationStatus
The status of the operation.
Type: String
Valid Values: awaiting_input | in_progress | complete | timed_out | failed

responseDownloadUrl
A URL where the output data file can be downloaded. This field is optional and is returned
only if operationStatus is complete.
Type: String

metadataDownloadUrl
A URL where the output metadata file can be downloaded. This file includes information
about the model used to code your data.This field is optional and is returned only if
operationStatus is complete.
Type: String

error
Information on why the operation failed. This field is optional and is returned only if
operationStatus is failed.

A state machine indicating the progression of operations is shown below:

A note about presigned URLs

The responseDownloadUrl and metadataDownloadUrl are presigned URLs.

Anyone with this link will be able to download your output file, but the link will expire after one hour,
after which you will have to get a new URL for your output file.

Your output files will be deleted from the system within 24 hours after your inference operation
succeeds.

Rele
as

ed
 u

nd
er

 F
OI A

ct

38

8.3.6 Errors

The following errors may occur when calling this service:

Unable to retrieve operation for given id

No operations were found to match the given operation_id. Please confirm your operation ID.
If you have lost your operation ID, you will have to create a new operation.
HTTP Status Code: 404 (Not Found)

User is not authorised to retrieve operation GUID

The specified operation does not belong to the current user.
You may have authenticated with the wrong user or specified the wrong operation_id. Try
authenticating again with the right credentials, and confirm your operation.
HTTP Status Code: 401 (Unauthorised)

For information about the errors that are common to all actions, see Section 10, Errors and
suggested actions.

8.3.7 Examples

Getting the status of an operation

Sample Request

GET /v1/topics/osca/batch-code/operations/GUID HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-type: application/json
Authorisation: example token

Sample Request, specifying the model used

GET /v1/topics/anzsco/models/GUID/batch-code/operations/GUID HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Content-type: application/json
Authorisation: example token

Sample Responses

HTTP/1.1 200 OK
Content-type: application/json

Request sample Expected response body Interpretation

New operation
(data not yet
uploaded)

{
"operationStatus":
"awaiting_input"
}

• The server acknowledges the
operation exists.

• No input data file has yet been
received.

• The operation is pending your next
action - typically an upload via PUT
request.

Rele
as

ed
 u

nd
er

 F
OI A

ct

39

Just uploaded

{
"operationStatus":
"in_progress"
}

• The server has received the input
data file.

• The specified operation is now
running, or may be queued to run
soon.

• You should keep checking in
periodically (for example, up to once
every ten minutes) to see how the
operation progresses.

• The output files will be deleted within
24 hours.

Never uploaded

{
"operationStatus":
"timed_out"
}

• The server acknowledges the
operation exists.

• No input data has yet been received.

• The operation has timed out due to
inactivity and can no longer accept
input data.

• If you wish to run an asynchronous
batch operation, you will need to
create a new operation.

Operation
complete

{
"operationStatus":
"complete",
"responseDownloadUrl":
"https://domain/endpoint?q
ueries",
"metadataDownloadUrl":
"https://domain/endpoint?q
ueries",
}

• The specified operation is now
complete.

• The output files are now available at
the provided URLs.

• You should download the output files
now as they will be deleted within 24
hours.

• There may be unsuccessfully coded
records in the output file. Errors will
be reported on a record-by-record
basis where possible. This reduces
the need to recode the entire input
file.

Operation failed {
"operationStatus":
"failed",
"error": "error message"
}

• The specified operation has failed
inference.

• Check your input file for any errors or
invalid records and try again.

• The error message may provide
context on what caused the operation
failure. If the error message does not
help resolve the issue, please note
your operation id when contacting us
for support.

• If you wish to run another
asynchronous batch operation, you
will need to create a new operation.

Rele
as

ed
 u

nd
er

 F
OI A

ct

https://domain/endpoint?queries
https://domain/endpoint?queries
https://domain/endpoint?queries
https://domain/endpoint?queries

40

8.4 Downloading processed data from a complete operation

Once your asynchronous inference operation is complete, you can download the output file by
accessing (copying into a web browser) the responseDownloadUrl that is provided when you check
the status of a complete operation. The same process may be used to view the operation
metadata, available at the metadataDownloadUrl.

This is a generic HTTP GET request which is managed by the AWS S3 server, and the expected
format is outlined below.

8.4.1 Response Elements

The asynchronous batch coding service outputs a jsonl file with each line corresponding to the
record from the original input file. Each line is an AsynchronousCodeResponse object.

8.4.2 Examples

In response to input which specifies a record identifier

Sample Request

GET https://domain/endpoint?queries HTTP/1.1

Sample Response

HTTP/1.1 200 OK
Date: Thu, 20 Jun 2024 02:26:34 GMT
Last-Modified: Thu, 20 Jun 2024 02:24:04 GMT
Accept-Ranges: bytes
Content-Type: application/octet-stream
Server: AmazonS3
Content-Length: 7660
...

{ "recordId": "1", "result": { "codeCategory": "261313", " codeLabel":
"Software Engineer", "codeConfidence": 0.98 } }
{ "id": "2", "suggestions": [{ "codeCategory": "411111", "codeLabel":
"Ambulance Officer", "codeConfidence": 0.26 }, { "codeCategory": "411112",
"codeLabel": "Intensive Care Ambulance Paramedic", "codeConfidence": 0.24 }] }
...

In response to input which specifies no record identifier

Sample Request

GET https://domain/endpoint?queries HTTP/1.1

Sample Response

HTTP/1.1 200 OK
Date: Thu, 20 Jun 2024 02:26:34 GMT
Last-Modified: Thu, 20 Jun 2024 02:24:04 GMT

Rele
as

ed
 u

nd
er

 F
OI A

ct

41

Accept-Ranges: bytes
Content-Type: application/octet-stream
Server: AmazonS3
Content-Length: 7660
...

{ "recordId": "", "result": { "codeCategory": "261313", " codeLabel": "Software
Engineer", "codeConfidence": 0.98 } }
{ "recordId": "", "suggestions": [{ "codeCategory": "411111", "codeLabel":
"Ambulance Officer", "codeConfidence": 0.26 }, { "codeCategory": "411112",
"codeLabel": "Intensive Care Ambulance Paramedic", "codeConfidence": 0.24 }] }
...

Rele
as

ed
 u

nd
er

 F
OI A

ct

42

9. Reporting Issues

If you encounter bugs or have feedback on the service, please report these via the following
mechanism:

9.1 Request Syntax

GET /v1/security.txt HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Authorisation: string

9.2 URI Request Parameters

The request does not use any URI parameters.

9.3 Request Body

The request does not have a request body.

9.4 Response Syntax

HTTP/1.1 200 OK
Content-type: text/html

<information on reporting errors>

9.5 Example

Sample Request

GET /v1/security.txt HTTP/1.1
Host: https://partner-coder.api.abs.gov.au
Authorisation: example token

Sample Response

HTTP/1.1 200 OK
Content-type: text/html
<p>contact: mailto:security@abs.gov.au
expires: 2024-06-27T05:45:00.000Z</p>

Rele
as

ed
 u

nd
er

 F
OI A

ct

43

10. Errors and suggested actions

These codes help identify issues on both the client and server sides, allowing for troubleshooting
and resolution of HTTP request problems.

Error Message Why this happened You should…

Generic errors possible on all api calls

Invalid request body

HTTP Status Code: 400

Something was wrong with your
request body syntax.

Example: small batch records
exceed length limit of 300/you
tried to code too many records
at once using the synchronous
small batch service.

• check the request body
syntax for the API call and try
again.

• Remove any special
characters from free text
inputs (see section 4.2)

• If your small batch has this
error, retry with a smaller
batch size, or consider using
the asynchronous batch
coding service.

User is not authorized to
access this resource with an
explicit deny

HTTP Status Code: 403

You have either not
authenticated or your
authentication token has
expired.

• authenticate again.

Error performing request

HTTP Status Code: 500

This happens when something
unexpected goes wrong on the
server. In some instances,
further context is provided.

• retry after a short delay;
report persistent issues to
support.

Problems selecting model/topic

The specified topic does not
exist

HTTP Status Code: 404

No topics matched the provided
topic parameter.

• check the available topics
before proceeding.

The specified model does not
exist

HTTP Status Code: 404

No models matched the
provided model parameter.

You’ll see this if the system can't
locate the specified model -
maybe due to a typo or outdated
ID.

• verify that the model name or
ID is correct and still active.

• check which models are
available or use the default
(latest) model for the topic.

Selected model does not
match the input topic.

HTTP Status Code: 409

The given model GUID does not
correspond to the specified
coding topic.

• check which models are
available or use the default
(latest) model for the topic.

Errors on the get models endpoint Rele
as

ed
 u

nd
er

 F
OI A

ct

44

No models found for topic
topic

HTTP Status Code: 500

No models are available for the
provided topic parameter.

• reach out to your ABS
contact to investigate why no
model is available.

Synchronous coding errors

Malformed record found in
request

HTTP Status Code: 400

The free text input did not match
the expected format for the
model.

• check what the expected
format is for a given topic
here.

Batch input contained no
records

HTTP Status Code: 400

You tried to code a small batch
of records but the records array
was empty.

• check that you have provided
at least one record to be
coded, and

• check that your request body
is correctly formatted.

There are record(s) outside
the min or max char limit:
Record with index x has a
total text length under 3 min
Record with index y has a
total text length over 100 max
…

HTTP Status Code: 400

One or more records provided
had too many or too few
characters. See 4.2.

• check that each record to be
coded has 3-100 (inclusive)
characters across the two
input fields.

RateLimitExceededException

HTTP Status Code: 429

(Too Many Requests)

You’ll see this when sending too
many requests too quickly.

• space out your requests and
implement retry logic.i

Asynchronous coding errors

User is not authorised to
retrieve operation GUID

HTTP Status Code: 401

The specified operation does
not belong to the current user.

You may have authenticated
with the wrong user or specified
the wrong operation_id.

• authenticate again and check
you have the right
credentials, and

• confirm your operation id.

Unable to retrieve operation
for given id

HTTP Status Code: 404

No operations were found to
match the given operation_id.

This is most likely due to a typo.

• confirm the operation ID is
correct.

• if you have lost your
operation ID, you will have to
create a new operation.

See more information on HTTP errors at HTTP response status codes - HTTP | MDN.

 Rele
as

ed
 u

nd
er

 F
OI A

ct

https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Status

45

11. Glossary of Inputs and Responses

11.1 Model details

These fields are returned by various methods in Section 6.

Field Description Type

modelId Unique identifier used to reference the ML model. String (GUID format)

modelVersion Version number of the model trained on the topic.
Distinct from topicVersion.

Number

modelReleaseDate Date the model was released, in ISO8601 format. String

modelType ML algorithm used (e.g., hsvm). String

inputFormat List of expected input field names. Array of strings

topicStandard Full name of the classification topic. String

topicVersion Version number of the topic classification used in
model training.

String

11.2 RecordObject

These are the fields expected when submitting data to the coding service.

Field Description Type

occp_text Free-text description of an occupation. String

tasks_text Tasks or duties related to the occupation. String

recordId Optional identifier for each input record. String

11.3 Response Objects

These are returned after synchronous or asynchronous coding operations.

11.3.1 SynchronousCodeResponse
Field Description Type

recordId Identifier for the submitted input record (if
originally provided).

String

codeStatus Coding outcome. Valid values: successful,
unsuccessful.

String

input Input record submitted to the model. RecordObject

result List of predicted codes and labels. Min length: 0;
Max: 16 (or value of numberOfSuggestions)

Array of
CodedRecord

11.3.2 AsynchronousCodeResponse
Field Description Type

recordId Identifier for the record or empty string if none
provided.

String

Rele
as

ed
 u

nd
er

 F
OI A

ct

46

result Top code assigned if coding was successful. CodedRecord object

suggestions List of alternate codes if coding was
unsuccessful. Min length: 1; Max: 3

Array of
CodedRecord

11.3.3 CodedRecord
Field Description Type

codeCategory Code assigned to the input. String

codeLabel Description of the code category. String

codeConfidence Confidence score (e.g., 0.92). May be rounded or
multiplied by 100 for a percentage.

Rele
as

ed
 u

nd
er

 F
OI A

ct

47

12. Security

The WoAG Coding Service and API has been security assessed by an independent registered
assessor within the Australian Signals Directorate (ASD) Information Security Registered
Assessors Program (IRAP) Program. This assessment found the WoAG Coding Service and API
to have met the control and security objectives defined through the Australian Government
Information Security Manual (ISM).

Agencies may need to sign off in-house on using an external API, for business, legal, or security
reasons. They may also need to check on their own behalf that the API response is from the
address they sent the request to.

The following security controls, drawn from the ISM, are included to assist partner agencies in
assessing their risks when using this service.

Control Name System Security Controls

Cryptography • Data is encrypted in transit to and from the API. All APIs created
with Amazon API Gateway expose HTTPS endpoints only. API
Gateway does not support unencrypted (HTTP) endpoints.

• API Gateway has been configured to choose a minimum
Transport Layer Security (TLS) protocol version of TLS 1.2.

• Data is encrypted at rest if it is to be stored by the request
action; only file-based batch requests require the storage of
request data. KMS Keys will be created for each environment
and applied to data (or metadata) storage components e.g., S3
buckets, DynamoDB tables.

Data Transfers • Bulk data transfers only occur for asynchronous requests. This
occurs through the AWS WAF and the AWS ABS Gateway.

• Data transferred as part of an asynchronous request is scanned.

• Resources involved in the coding of file-based requests (e.g.
Lambda, SageMaker) are able to read data from bucket(s)
containing post-scanned/validated data, not raw ingress data,
and are only able to write to a specific egress bucket.

• For file-based batch coding, consumers are provided S3 pre-
signed URLs for data file ingress and egress. This aligns with
ISM cryptographic control requirements (ISMF 1123–1126),
access control measures for external interfaces (ISMF 1295–
1300), and secure transmission/storage of sensitive data (ISMF
1352–1354).

• These URLs are configured with expiration times aligned with
the time required to perform a coding request. This is a dynamic
value and is configured based on performance data from
implemented models.

• Data stored in service of file-based batch coding (e.g. ingressed
request data and egressed coded response data) is configured
for automated expiry (deletion). Minimal expiry time is
configured based on the time required to perform a coding
request, pending performance data from implemented models.

Data Sovereignty • No data will be stored or processed outside Australia.

• Services will never failover to services outside of Australia.

Rele
as

ed
 u

nd
er

 F
OI A

ct

48

Control Name System Security Controls

Machine Learning (ML) • There is no external connection (outside of the dedicated ABS
accounts) or other ML reference used in the WoAG Coding
Service or in the training of the ML models.

• Only isolated instances of Machine Learning within ABS-owned
secure AWS accounts are used to train the models that underpin
the Coding Service.

• While the ABS is exploring the use of Distilbert - Large Language
Models (LLM) combined with Census data to train coder models,
only more traditional ML models such as Hierarchical Support
Vector Machine (HSVM) models, trained only using Census data,
will be used in the external service.

• Only specific response text, separated from all other response
data, is used to create the ML models and in the Coding Service.

• The service can only respond with the classification codes and
labels defined in the relevant classification standard and version,
unless a record identifier is also provided by the user. In this
instance, the record identifier is returned to the user with the
data.

• The application of the models used in the Coding Service, and all
data passed through the coders, remains within the ABS secure
accounts at all times. No user data is stored or retained. User
data is temporarily stored within ABS secure accounts while
being processed, and then deleted.

Rele
as

ed
 u

nd
er

 F
OI A

ct

