Australian Bureau of Statistics

Rate the ABS website
ABS Home > Statistics > By Release Date
4901.0 - Children's Participation in Cultural and Leisure Activities, Australia, Apr 2006  
Previous ISSUE Released at 11:30 AM (CANBERRA TIME) 15/12/2006   
   Page tools: Print Print Page Print all pages in this productPrint All RSS Feed RSS Bookmark and Share Search this Product



TECHNICAL NOTE DATA QUALITY


ESTIMATION PROCEDURE

1 Estimates of children were derived using a ratio estimation procedure which ensures that estimates conform to an independently estimated state by age by sex distribution of children in the population, rather than to the distribution within the sample itself.



RELIABILITY OF ESTIMATES

2 Since the estimates in this publication are based on information obtained from occupants of a sample of dwellings, they are subject to sampling variability; that is, they may differ from those that would have been produced if all dwellings had been included in the survey. One measure of the likely difference is given by the standard error (SE), which indicates the extent to which an estimate might have varied by chance because only a sample of dwellings was included. There are about two chances in three (67%) that a sample estimate will vary by less than one SE from the number that would have been obtained if all dwellings had been included, and about 19 chances in 20 (95%) that the difference will be less than two SEs. Another measure of the likely difference is the relative standard error (RSE), which is obtained by expressing the SE as a percentage of the estimate.


3 Due to space limitations, it is impractical to include the SE of each estimate in the publication. Instead, a table of SEs is provided to enable readers to determine the approximate SE for an estimate from the size of that estimate (see table T1). The SE table is derived from a mathematical model, referred to as the 'SE model', which is created using the data collected in this survey. It should be noted that the SE model only gives an approximate value for the SE for any particular estimate, since there is some minor variation between SEs for different estimates of the same size.



CALCULATION OF STANDARD ERROR

4 An example of the calculation and the use of SEs in relation to estimates of children is as follows. From table 27 an estimated 892,100 males accessed the Internet in the 12 months ending April 2006. Since this estimate is between 500,000 and 1,000,000, the Australia column of table T1 shows that the SE for this estimate lies between 11,850 and 15,950. The SE can be approximated by interpolation using the following general formula:
SE of estimate
=
Equation: A general formula for estimating the standard error of an estimate.
= 11,850 + (((892,100 - 500,000) / (1,000,000 - 500, 000)) x (15,950 - 11,850))
= 15,065
= 15,100 (rounded to the nearest 100)


5 Therefore, there are about 2 chances in 3 that the value that would have been produced if all dwellings had been included in the survey would have been within the range 877,000 and 907,200 and about 19 chances in 20 that the value would have been within the range 861,900 and 922,300. This example is illustrated in the diagram below.

Diagram: A diagram illustrating that the size of the standard error increases as the size of the estimate increases.


6 In general, the size of the SE increases as the size of the estimate increases. Conversely, the RSE decreases as the size of the estimate increases. Very small estimates are subject to such high RSEs that their value for most practical purposes is unreliable. In the tables in this publication, only estimates with RSEs of less than 25% are considered reliable for most purposes. Estimates with RSEs greater than 25% but less than or equal to 50% are preceded by an asterisk (e.g. *3.4) to indicate they are subject to high RSEs and should be used with caution. Estimates with RSEs of greater than 50%, preceded by a double asterisk (e.g. **0.3), are considered too unreliable for general use and should only be used to aggregate with other estimates to provide derived estimates with RSEs of less than 25%.



MEANS AND MEDIANS

7 This publication contains means and medians. Both are measures for locating the centre of a set of values, but each measure has its own method. The mean is the arithmetic average, whereas the median is the middle value of a set of values when the values are sorted in size order.


8 The RSE of an estimate of a mean or median number of hours or times spent on selected cultural, sporting and other activities can be obtained by firstly finding the RSE of the estimate of the total number of persons contributing to the mean or median (see table T1). This RSE can then be multiplied by the relevant factor below to obtain the RSE of the mean or median:

  • mean number of times spent on the selected cultural, sporting or other activity in the past year: 1.33
  • median number of times spent on the selected cultural, sporting or other activity in the past year: 1.54
  • mean number of hours spent on the selected cultural, sporting or other activity in the last two school weeks: 1.35
  • median number of hours spent on the selected cultural, sporting or other activity in the last two school weeks: 2.11

9 The following is an example of the calculation of SEs where the use of a factor is required. Table 22 shows that the estimated number of children who watched television, videos or DVDs during the last two school weeks was 2,596,000, with the median number of hours spent watching television, videos or DVDs being 15 hours. The SE for this estimate of 2,596,000 can be calculated from table T1 (by interpolation) as 23,300. To convert this to a RSE, the SE is expressed as a percentage of the estimate, or 23,300/2,596,000 = 0.9%.


10 The RSE of the estimate of the median number of hours spent watching television, videos or DVDs is calculated by multiplying this number (0.9%) by the appropriate factor shown in paragraph 8 (in this case 2.11): 0.9 x 2.11 = 1.9%. The SE of this estimate of median number of hours spent watching television, videos or DVDs is therefore 1.9% of 15, i.e. about 0.3 hours. Therefore, there are 2 chances in 3 that the median number of hours spent watching television, videos or DVDs that would have been obtained if all children had been included in the survey would have been within the range 14.7 hours to 15.3 hours, and about 19 chances in 20 that it would have been within the range 14.4 hours to 15.6 hours.



PROPORTIONS AND PARTICIPATION RATES

11 Proportions and participation rates formed from the ratio of two estimates are also subject to sampling error. The size of the error depends on the accuracy of both the numerator and the denominator. A formula to approximate the RSE of a proportion is given below. This formula is only valid when x is a subset of y.Equation: A formula to approximate the RSE of a proportion.


12 Considering the example above, the 892,100 males aged 5-14 years who accessed the Internet in the 12 months ending April 2006, represent 51.5% of the 1,730,700 children in Australia, aged 5-14 years who accessed the Internet. The SE of 1,730,700 may be calculated by interpolation as 19,900. To convert this to a RSE we express the SE as a percentage of the estimate, or 19,900/1,730,700 = 1.1%. The SE for 892,100 was calculated previously as 15,100, which converted to a RSE is 15,100/892,100 = 1.7%. Applying the above formula the RSE of the proportion is Equation: A formula to approximate the RSE of an estimate using data from the example stated in the text.= 1.3%


13 Therefore, the SE for the proportion of Internet users who were male is 0.7 percentage points (=(51.5/100) x 1.3). Therefore, there are about 2 chances in 3 that the proportion of Internet users who were male is between 50.8% and 52.2%, and 19 chances in 20 that the proportion is within the range 50.1% and 52.9%.



DIFFERENCES

14 Published estimates may also be used to calculate the difference between two survey estimates (of numbers or percentages). Such an estimate is subject to sampling error. The sampling error of the difference between two estimates depends on their SEs and the relationship (correlation) between them. An approximate SE of the difference between two estimates (x-y) may be calculated by the following formula:Equation: A general formula for calculating an approximate SE of the difference between two estimates (xy)


15 While this formula will only be exact for differences between separate and uncorrelated characteristics or subpopulations, it is expected to provide a good approximation for all differences likely to be of interest in this publication.

T1 STANDARD ERRORS OF ESTIMATES

AUST.
NSW
Vic.
Qld
SA
WA
Tas.
NT
ACT
SE
RSE
no.
no.
no.
no.
no.
no.
no.
no.
no.
%

300
430
360
370
270
300
210
210
220
300
100.0
500
550
470
460
340
400
270
270
280
400
80.0
700
640
560
540
400
470
320
330
330
480
68.6
1,000
760
670
640
470
560
370
390
390
580
58.0
1,500
920
810
760
560
690
450
470
460
720
48.0
2,000
1 050
940
870
640
790
510
540
520
840
42.0
2,500
1 150
1 050
950
700
900
550
600
580
950
38.0
3,000
1 250
1 150
1 050
750
950
600
650
620
1 050
35.0
3,500
1 350
1 200
1 100
800
1 050
650
700
650
1 100
31.4
4,000
1 450
1 300
1 200
850
1 100
700
750
700
1 200
30.0
5,000
1 600
1 450
1 300
950
1 200
750
800
750
1 350
27.0
7,000
1 900
1 700
1 550
1 100
1 400
850
900
900
1 600
22.9
10,000
2 250
2 000
1 800
1 300
1 650
950
1 050
1 000
1 900
19.0
15,000
2 700
2 350
2 200
1 550
1 950
1 100
1 200
1 200
2 350
15.7
20,000
3 050
2 700
2 500
1 750
2 200
1 200
1 300
1 350
2 700
13.5
30,000
3 700
3 200
3 000
2 050
2 650
1 350
1 500
1 550
3 250
10.8
40,000
4 200
3 600
3 450
2 300
2 950
1 450
1 650
1 750
3 750
9.4
50,000
4 650
3 950
3 800
2 550
3 250
1 550
. .
1 900
4 150
8.3
100,000
6 350
5 200
5 250
3 400
4 200
1 850
. .
. .
5 750
5.8
150,000
7 600
6 100
6 300
4 000
4 900
. .
. .
. .
6 950
4.6
200,000
8 650
6 800
7 200
4 500
5 450
. .
. .
. .
7 900
4.0
300,000
10 350
7 900
8 700
. .
6 300
. .
. .
. .
9 450
3.2
500,000
13 000
9 500
11 050
. .
. .
. .
. .
. .
11 850
2.4
1,000,000
17 600
12 150
15 250
. .
. .
. .
. .
. .
15 950
1.6
2,000,000
. .
. .
. .
. .
. .
. .
. .
. .
21 350
1.1
5,000,000
. .
. .
. .
. .
. .
. .
. .
. .
31 000
0.6

. . not applicable

T2 LEVELS AT WHICH ESTIMATES HAVE RELATIVE STANDARD ERRORS OF 25% AND 50%(a)

NSW
Vic.
Qld
SA
WA
Tas.
NT
ACT
Aust.
no.
no.
no.
no.
no.
no.
no.
no.
no.

25% RSE

Mean number of times participated in activity
13 662
10 918
9 349
5 140
7 916
3 380
3 784
3 563
10 272
Median number of times participated in activity
17 937
14 211
12 271
6 672
10 297
4 318
4 856
4 590
13 749
Mean number of hours participated in activity
14 076
11 239
9 631
5 289
8 148
3 473
3 890
3 663
10 606
Median number of hours participated in activity
32 183
24 859
22 075
11 664
17 963
7 199
8 160
7 858
25 554
All other estimates
8 077
6 522
5 545
3 102
4 729
2 078
2 302
2 173
5 819

50% RSE

Mean number of times participated in activity
3 760
3 036
2 610
1 483
2 194
988
1 070
1 043
2 512
Median number of times participated in activity
4 954
4 008
3 422
1 936
2 902
1 299
1 420
1 362
3 407
Mean number of hours participated in activity
3 876
3 130
2 688
1 527
2 262
1 018
1 104
1 074
2 598
Median number of hours participated in activity
8 953
7 219
6 141
3 425
5 235
2 289
2 542
2 395
6 508
All other estimates
2 208
1 762
1 551
885
1 267
571
606
620
1 386

(a) Refers to the number of persons contributing to the estimate.


Bookmark and Share. Opens in a new window

Commonwealth of Australia 2014

Unless otherwise noted, content on this website is licensed under a Creative Commons Attribution 2.5 Australia Licence together with any terms, conditions and exclusions as set out in the website Copyright notice. For permission to do anything beyond the scope of this licence and copyright terms contact us.